Chinese Medical Sciences Journal ›› 2022, Vol. 37 ›› Issue (3): 210-217.doi: 10.24920/004086
王淳1,常琴雪1,王肖萌1,王柯云1,王鹤2,崔壮1,*(),李长平1,*(
)
Chun Wang1,Qinxue Chang1,Xiaomeng Wang1,Keyun Wang1,He Wang2,Zhuang Cui1,*(),Changping Li1,*(
)
摘要:
目的 基于临床常用指标,采用机器学习方法构建前列腺癌风险预测模型,为前列腺癌的早期诊疗提供科学依据,评价人工智能技术在医疗健康数据平台下的应用价值。
方法 对国家临床医学科学数据中心提供的前列腺肿瘤预警数据集预处理后,使用平滑剪切绝对偏差(smoothly clipped absolute deviation,SCAD)算法筛选特征指标。采用随机森林(Radom forest,RF)、支持向量机(support vector machine,SVM)、反向传播(back propagation,BP)神经网络、卷积神经网络(convolutional neural network,CNN)4种模型预测前列腺癌发生风险,其中神经网络模型使用经SMOTE增强后数据拟合。不同模型的预测能力采用受试者操作特性(ROC)曲线下面积(area under the curve,AUC)进行比较。在确定最优模型后,使用Shiny开发前列腺癌风险预测在线平台。
结果 在预测变量中,除活检标本碎组织体积、血游离前列腺特异抗原(fPSA)外,无机磷、甘油三酯、游离钙等临床常用指标与前列腺癌也密切相关。在4种模型中,RF预测效果最好(准确率:96.80%;AUC:0.975,95%CI:0.964-0.986),其次为BP神经网络(准确率:85.36%;AUC:0.892,95%CI:0.849-0.934),SVM(准确率:82.67%;AUC:0.824,95%CI:0.805-0.844)与BP神经网络预测效果相近,CNN预测能力最低(准确率:72.37%;AUC:0.724,95%CI:0.670-0.779)。基于RF及预测指标成功开发了一种前列腺癌风险预测在线平台。
结论 本研究揭示了医疗信息化平台下传统机器学习方法和基础神经网络模型在疾病风险预测中的应用价值,为疑似前列腺癌并接受穿刺活检人群的前列腺癌预测提出了新思路。此外,开发在线预测系统有助于增强人工智能预测技术的实用性,使医疗应用更为便捷。