1. |
Roth P, Stupp R, Eisele G , et al. Treatment of primary CNS lymphoma. Curr Treat Options Neurol 2014; 16(1):277. doi: 10.1007/s11940-013-0277-y.
doi: 10.1007/s11940-013-0277-y
pmid: 24343307
|
2. |
Hervey-Jumper SL, Berger MS . Maximizing safe resection of low- and high-grade glioma. J Neurooncol 2016; 130(2):269-82. doi: 10.1007/s11060-016-2110-4.
doi: 10.1007/s11060-016-2110-4
pmid: 27174197
|
3. |
Zhang H, Zeng WB . Study of the value of MRI in the diagnosis of high-grade gliomas. Chin J CT MRI 2017; 15(8):37-9. doi: 10.3969/j.issn.1672-5131.2017.08.011.
|
4. |
Zhang TJ, Lv S , Yue Q, et al. MRI diagnosis and differential diagnosis of intracerebral primary non-Hodgkin lymphoma. Radiol Practice 2010; 25(9):994-8. doi: 10.3969/j.issn.1000-0313.2010.09.014.
|
5. |
Cao B, Chen ZQ, Zhang JX . Comparative analysis among multimodal MRI and pathology of primary central nervous system lymphoma. Chin J CT MRI 2012; 10(6):8-11. doi: 10.3969/j.issn.1672-5131.2012.06.003.
|
6. |
Wang R, Zheng J, Du YH , et al. Value of conventional MRI features in solitary cerebral glioma grading. J Xi’an Jiaotong University (Medical Sciences) 2017; 38(6):866-71. doi: 10.7652/jdyxb201706016.
|
7. |
Vignati A, Mazzetti S, Giannini V , et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol 2015; 60(7):2685-701. doi: 10.1088/0031-9155/60/7/2685.
doi: 10.1088/0031-9155/60/7/2685
pmid: 25768265
|
8. |
Chen Z, Feng F, Yang Y , et al. MR imaging findings of the corpus callosum region in the differentiation between multiple sclerosis and neuromyelitis optica. Eur J Radiol 2012; 81(11):3491-5. doi: 10.1016/j.ejrad.2012.02.010.
doi: 10.1016/j.ejrad.2012.02.010
pmid: 22445592
|
9. |
Yu TG, Dai JZ, Feng XY . MRI and 1H-MRS characteristics of primary central nervous system lymphomas (PCNSL) . J Clin Radiol 2005; 24(8):13-7.
|
10. |
Castellano G, Bonilha L, Li LM , et al. Texture analysis of medical images. Clin Radiol 2004; 59(12):1061-9. doi: 10.1016/j.crad.2004.07.008.
doi: 10.1016/j.crad.2004.07.008
pmid: 15556588
|
11. |
Mohanaiah P, Sathyanarayana P, Gurukumar L . Image texture feature extraction using GLCM approach. Inter J Sci Res Publications 2014; 3(5):1-5.
|
12. |
Wang B, Liu G, Fan W , et al. Value of texture feature analysis in the differential diagnosis of hepatic cyst and hemangioma in magnetic resonance imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2017; 39(2):169-76. doi: 10.3881/j.issn.1000-503X.2017.02.002.
doi: 10.3881/j.issn.1000-503X.2017.02.002
pmid: 28483013
|
13. |
Wang BT, He L, Liu G , et al. Value of magnetic resonance imaging texture feature analysis in the differential diagnosis between pancreatic serous cystadenoma and mucinous cystadenoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2018; 40(2):187-93. doi: 10.3881/j.issn.1000-503X.2018.02.008.
|
14. |
Wang BT, Liu G, He L , et al. Texture feature analysis in follow-up of pulmonary ground glass nodule. Chin J Med Imaging 2017; 25(6):441-6. doi: 10.3969/j.issn.1005-5185.2017.06.011.
|
15. |
Bo H, Ma FL, Jiao LC . Research on computation of GLCM of image texture. Dianzi Xue Bao 2006; 34(1):57-60. doi: 10.3321/j.issn:0372-2112.2006.01.032.
|
16. |
Skogen K, Schulz A, Dormagen JB , et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 2016; 85(4):824-9. doi: 10.1016/j.ejrad.2016.01.013.
doi: 10.1016/j.ejrad.2016.01.013
pmid: 26971430
|
17. |
Chu HH, Choi SH, Ryoo I , et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 2013; 269(3):831-40. doi: 10.1148/radiol.13122024.
doi: 10.1148/radiol.13122024
pmid: 23771912
|
18. |
Xiao DD, Yan PF, Wang YX , et al. Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 2018; 173:84-90. doi: 10.1016/j.clineuro.2018.08.004.
doi: 10.1016/j.clineuro.2018.08.004
|
19. |
Kunimatsu A, Kunimatsu N, Yasaka K , et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 2019; 18(1):44-52. doi: 10.2463/mrms.mp.2017-0178.
doi: 10.2463/mrms.mp.2017-0178
|
20. |
Suh HB, Choi YS, Bae S , et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 2018; 28(9):3832-9. doi: 10.1007/s00330-018-5368-4.
doi: 10.1007/s00330-018-5368-4
pmid: 29626238
|
21. |
Kunimatsu A, Kunimatsu N, Kamiya K , et al. Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 2018; 17(1):50-7. doi: 10.2463/mrms.mp.2017-0044.
doi: 10.2463/mrms.mp.2017-0044
pmid: 28638001
|
22. |
Verma RK, Wiest R, Locher C , et al. Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): a feasibility study. Med Phys 2017; 44(8):4000-8. doi: 10.1002/mp.12356.
doi: 10.1002/mp.12356
pmid: 28543071
|
23. |
Sun ZG, Wang XL, Zhu H , et al. The value of texture analysis in differentiating diagnosis between primary cerebral lymphoma and high-grade glioma. J Clin Radiol 2017; 36(9):1229-34. doi: 10.13437/j.cnki.jcr.2017.09.007.
|