1. |
Ellis JM, Frahm JL, Li L, et al. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol 2010; 21:212-7.
|
2. |
Mashek DG, Li L, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol 2007; 2:465-76.
|
3. |
Jia Z, Moulson CL, Pei Z, et al. FATP4 is the principal very long-chain fatty acyl CoA synthetase in skin fibroblasts. Biol Chem 2007; 10:1074-88.
|
4. |
Li QG, Zhu T, Yang YZ, et al. Advance research of ACSL. Chin Anim Husbandry Veter Med 2012; 6:137-40.
|
5. |
Mashek DG, Li L, Coleman RA. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. Lipid Res 2006; 47:2004-10.
|
6. |
Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev 2012; 92:1061-85.
|
7. |
Ellis JM, Mentock SM, Depetrillo MA, et al. Mouse cardiac acyl coenzyme A synthetase 1 deficiency impairs fatty acid oxidation and induces cardiac hypertrophy. Mol Cell Biol 2011; 31:1252-62.
|
8. |
Li L, Ellis JM, Paich H, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. Biol Chem 2009; 284:27816-26.
|
9. |
James PH, Katie E, Yoon KL, et al. Eicosanoids in metabolic syndrome. Adv Pharmacol 2013; 66:157-266.
|
10 |
Heimerl S, Moehle C, Zahn A, et al. Alterations in intestinal fatty acid metabolism in inflammatory bowel disease. Biochim Biophys Acta 2006; 1762:341-50.
|
11 |
Klaus C, Jeon MK, Kaemmerer E, et al. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind. World J Gastroenterol 2013; 19: 7369-73.
|
12 |
Soupene E, Frans A, Kuypers M. Long-chain acyl-CoA synthetases. Exp Biol Med (Maywood) 2008; 233:507-21.
|
13 |
Tong F, Black PN, Coleman RA, et al. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases. Arch Biochem Biophys 2006; 447:46-52.
|
14 |
Bu SY, Mashek DG. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 2010; 51:3270-80.
|
15 |
Richards MR, Harp JD, Ory DS, et al. Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. J Lipid Res 2006; 47:665-72.
|
16 |
Qi RL, Huang JX, Yang FY, et al. Fatty acid transport proteins and fatty acid transfer. Chin J Anim Nutr 2013; 5:905-11.
|
17 |
Mashek DG, Coleman RA. Cellular fatty acid uptake: the contribution of metabolism. Curr Opin Lipidol 2006; 17:274-8.
|
18 |
Yan S, Yang XF, Liu HL, et al. Long-chain acyl-CoA synthe- tase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 2015; 21: 3492-8.
|
19 |
Poppelreuther M, Rudolph B, Du C, et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res 2012; 53:888-900.
|
20 |
Filip-Ciubotaru F, Foia L, Manciuc C, et al. PPARs: structure, mechanisms of action and control. Note I. Rev Med Chir Soc Med Nat Iasi 2011; 115:477-84.
|
21 |
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 2010; 1801:246-51.
|
22 |
Mashek DG, McKenzie MA, Van Horn CG, et al. Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle -RH7777 cells. Biol Chem 2006; 281:945-50.
|
23 |
Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003; 52:2882-7.
|
24 |
Wu D, Liu JT, Pang XM, et al. Palmitic acid exerts proinflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthanse and tumor necrosis factor-α. Int J Mol Med 2014; 34:1706-12.
|
25 |
Liu JT. The progress of atherosclerosis inflammation me- chanism. Academic J Xi’an Jiaotong Univ (Med Sci) 2015; 2:141-52.
|
26 |
Kageyama A, Matsui H, Ohta M, et al. Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-κB, novel targets of eicosapentaenoic acid. PLoS One 2013; 8:e681-97.
|
27 |
Golej DL, Askari B, Kramer F, et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E 2 release from human arterial smooth muscle cells. J Lipid Res 2011; 52: 782-93.
|
28 |
Kanter JE, Kramer F, Barnhart S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci USA 2012; 109:E715-E24.
|
29 |
Kim JA, Monyagnani M. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 2006; 113:1888-904.
|