Chinese Medical Sciences Journal ›› 2019, Vol. 34 ›› Issue (2): 76-83.doi: 10.24920/003611
• Perspectives • Previous Articles Next Articles
Received:
2019-05-05
Accepted:
2019-05-31
Published:
2019-06-30
Online:
2019-06-07
Contact:
Guan Jian
E-mail:gjpumch@126.com
Guan Jian. Artificial Intelligence in Healthcare and Medicine: Promises, Ethical Challenges and Governance[J].Chinese Medical Sciences Journal, 2019, 34(2): 76-83.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Sniecinski I, Seghatchian J . Artificial intelligence: a joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine. Transfus Apher Sci 2018; 57(3):422-4. doi:
doi: 10.1016/j.transci.2018.05.004 |
[2] |
Tran BX, Vu GT, Ha GH , et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med 2019; 8(3):360. doi:
doi: 10.3390/jcm8030360 |
[3] |
Crigger E, Khoury C . Making policy on augmented intelligence in health care. AMA J Ethics 2019; 21(2):E188-91. doi:
doi: 10.1001/amajethics.2019.188 |
[4] | Modha DS. Introducing a brain-inspired computer TrueNorth’s neurons to revolutionize system architecture.http://www.research.ibm.com/articles/brain-chip.shtml . Accessed May 02, 2019. |
[5] | Dutton T. An overview of national AI strategies. . Published June 28, 2018; updated July 13, 2018; accessed April 28, 2019.https://toinformistoinfluence.com/2018/07/14/an-overview-of-national-ai-strategies |
[6] | Reuters . France to spend 1.8 billion on AI to compete with U.S., China.http://scientists.trendolizer.com/2018/04/france-to-spend-18-billion-on-ai-to-compete-with-us-china.html . Published March 29, 2018; accessed April 19, 2019. |
[7] |
Bini SA . Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty 2018; 33(8):2358-61. doi:
doi: 10.1016/j.arth.2018.02.067 |
[8] |
Kapoor R, Walters SP, Al-Aswad LA . The current state of artificial intelligence in ophthalmology. Surv Ophthalmol 2019; 64(2):233-40. doi:
doi: 10.1016/j.survophthal.2018.09.002 |
[9] |
Williams AM, Liu Y, Regner KR , et al. Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics 2018; 50(4):237-43. doi:
doi: 10.1152/physiolgenomics.00119.2017 |
[10] |
Parola C, Neumeier D, Reddy ST . Integrating high‐throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 2018; 153(1):31-41. doi:
doi: 10.1111/imm.12838 |
[11] |
Hammond R, Athanasiadou R, Curado S , et al. Predicting childhood obesity using electronic health records and publicly available data. PLoS One 2019; 14(4):e0215571. doi:
doi: 10.1371/journal.pone.0215571 |
[12] |
Shen R, Martin A, Ni A , et al. Harnessing clinical sequencing data for survival stratification of patients with metastatic lung adenocarcinomas. JCO Precis Oncol 2019; 3:1-9. doi: .
doi: 10.1200/PO.18.00307 |
[13] |
Retson TA, Besser AH, Sall S , et al. Machine learning and deep neural networks in thoracic and cardiovascular imaging. J Thorac Imaging 2019; 34(3):192-201. doi:
doi: 10.1097/RTI.0000000000000385 |
[14] |
Hamet P, Tremblay J . Artificial intelligence in medicine. Metabolism 2017; 69S:S36-S40. doi: .
doi: 10.1016/j.metabol.2017.01.011 |
[15] |
Ye JJ . Artificial intelligence for pathologists is not near-it is here: description of a prototype that can transform how we practice pathology tomorrow. Arch Pathol Lab Med 2015; 139(7):929-35. doi:
doi: 10.5858/arpa.2014-0478-OA |
[16] |
Ho CWL, Soon D, Caals K , et al. Governance of automated image analysis and artificial intelligence analytics in healthcare. Clin Radiol 2019; 74(5):329-37. doi:
doi: 10.1016/j.crad.2019.02.005 |
[17] |
Vandemeulebroucke T , Dierckx de Casterlé B, Gastmans C. The use of care robots in aged care: a systematic review of argument-based ethics literature. Arch Gerontol Geriatr 2018; 74:15-25. doi:
doi: 10.1016/j.archger.2017.08.014 |
[18] |
Sullivan LS, Klein E, Brown T , et al. Keeping disability in mind: a case study in implantable brain-computer interface research. Sci Eng Ethics 2018; 24(2):479-504. doi: .
doi: 10.1007/s11948-017-9928-9 |
[19] |
Nam CS, Woo J, Bahn S . Severe motor disability affects functional cortical integration in the context of brain-computer interface (BCI) use. Ergonomics 2012; 55(5):581-91. doi:
doi: 10.1080/00140139.2011.647095 |
[20] |
Tidoni E, Abu-Alqumsan M, Leonardis D , et al. Local and remote cooperation with virtual and robotic agents: a P300 BCI study in healthy and people living with spinal cord injury. IEEE Trans Neural Syst Rehabil Eng 2017; 25(9):1622-32. doi:
doi: 10.1109/TNSRE.2016.2626391 |
[21] |
Hochberg LR, Serruya MD, Friehs GM , et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442(7099):164-171. doi: .
doi: 10.1038/nature04970 |
[22] |
Schettini F, Riccio A, Simione L , et al. Assistive device with conventional, alternative, and brain-computer interface inputs to enhance interaction with the environment for people with amyotrophic lateral sclerosis: a feasibility and usability study. Arch Phys Med Rehabil 2015; 96(3):S46-S53. doi:
doi: 10.1016/j.apmr.2014.05.027 |
[23] |
Hassabis D, Kumaran D, Summerfield C , et al. Neuroscience-inspired artificial intelligence. Neuron 2017; 95(2):245-58. doi:
doi: 10.1016/j.neuron.2017.06.011 |
[24] |
Boyle JM . Towards understanding the principle of double effect. Ethics 1980; 90:527-38. doi:
doi: 10.1086/292183 |
[25] |
Petrini C . Bioethics of clinical applications of stem cells. Int J Mol Sci 2017; 18(4):814. doi:
doi: 10.3390/ijms18040814 |
[26] |
Winfield AFT, Jirotka M . Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philos Trans A Math Phys Eng Sci 2018; 376(2133):20180085. doi:
doi: 10.1098/rsta.2018.0085 |
[27] |
Burwell S, Sample M, Racine E . Ethical aspects of brain computer interfaces: a scoping review. BMC Med Ethics 2017; 18(1):60. doi:
doi: 10.1186/s12910-017-0220-y |
[28] | Beauchamp TL, Childress JF. Principles of biomedical ethics. 7th ed. New York, NY, USA: Oxford University Press; 2013. |
[29] | Jonsen AR, Siegler M , Winslade WJ. Clinical Ethics. New York, NY, USA: McGraw-Hill; 2006. |
[30] |
Poggio T, Shelton CR . Learning in brains and machines. Spat Vis 2000; 13(2-3):287-96.
doi: 10.1163/156856800741108 |
[31] |
Vassanelli S, Mahmud M . Trends and challenges in neuroengineering: toward “Intelligent” neuroprostheses through brain—“Brain Inspired Systems” communication. Front Neurosci 2016; 10:438. doi:.
doi: 10.3389/fnins.2016.00438 |
[32] |
Eiben AE, Kernbach S, Haasdijk E . Embodied artificial evolution artificial evolutionary systems in the 21st century. Evol Intell 2012; 5:261-72. doi:
doi: 10.1007/s12065-012-0071-x |
[33] |
Ajrawi AS, Bialek H, Sarkar M , et al. Bi-directional channel modeling for implantable UHF-RFID transceivers in brain-computer interface applications. Future Generation Comput Syst 2018; 88:683-92. doi:
doi: 10.1016/j.future.2018.03.036 |
[34] |
Burwell S, Sample M, Racine E . Ethical aspects of brain computer interfaces: a scoping review. BMC Med Ethics 2017; 18(1):60. doi:
doi: 10.1186/s12910-017-0220-y |
[35] |
Yuste R, Goering S, Arcas BAY , et al. Four ethical priorities for neurotechnologies and AI. Nature 2017; 551:159-63. doi:
doi: 10.1038/551159a |
[36] |
Richman B . Health regulation for the digital age- correcting the mismatch. N Engl J Med 2018; 379:1694-169. doi:
doi: 10.1056/NEJMp1806848 |
[37] |
Stilgoe J, Owen R, Macnaghten P . Developing a framework for responsible innovation. Res Policy 2013; 42:1568-80. doi:
doi: 10.1016/j.respol.2013.05.008 |
[38] |
Winfield AFT, Jirotka M . Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philos Trans A Math Phys Eng Sci 2018; 376(2133):20180085. doi:
doi: 10.1098/rsta.2018.0085 |
[39] | Palmerini E. Azzarri F, Battaglia F , et al. D6.2—Guidelines on regulating robotics. RoboLaw project.http://www.robolaw.eu/RoboLaw_files/documents/robolaw_d6.2_guidelinesregulatingrobotics_20140922.pdf . Mordified September 22, 2014; accessed April 8, 2019. |
[40] | British Standards Institution . BS 8611:2016 Robots and robotic devices. Guide to the ethical design and application of robots and robotic systems. London, UK: BSI; 2016. |
[41] | The High-Level Expert Group on AI. Ethics guidelines for trustworthy AI. The European Commission. B-1049 Brussels. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai. Published April 8, 2019; accessed April 28, 2019. |
[1] | Wei Ba, Shuhao Wang, Cancheng Liu, Yuefeng Wang, Huaiyin Shi, Zhigang Song. Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm [J]. Chinese Medical Sciences Journal, 2021, 36(3): 204-209. |
[2] | Chen Xu, Huo Xiaofei, Wu Zhe, Lu Jingjing. Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers [J]. Chinese Medical Sciences Journal, 2021, 36(3): 196-203. |
[3] | Jiazheng Li, Lei Tang. Radiomics in Antineoplastic Agents Development: Application and Challenge in Response Evaluation [J]. Chinese Medical Sciences Journal, 2021, 36(3): 187-195. |
[4] | Junxiong Yin, Cheng Yu, Lixia Wei, Chuanyong Yu, Hongxing Liu, Mingyang Du, Feng Sun, Chongjun Wang, Xiaoshan Wang. Detection of Asymptomatic Carotid Artery Stenosis in High-Risk Individuals of Stroke Using a Machine-Learning Algorithm [J]. Chinese Medical Sciences Journal, 2020, 35(4): 297-305. |
[5] | Wang Zheng, Zhao Qinghua, Yang Jinglin, Zhou Feng. Enhancing Quality of Patients Care and Improving Patient Experience in China with Assistance of Artificial Intelligence [J]. Chinese Medical Sciences Journal, 2020, 35(3): 286-288. |
[6] | Shi Ying-huan,Wang Qian. The Artificial Intelligence-Enabled Medical Imaging: Today and Its Future [J]. Chinese Medical Sciences Journal, 2019, 34(2): 71-75. |
[7] | Xiao Yi,Liu Shiyuan. Collaborations of Industry, Academia, Research and Application Improve the Healthy Development of Medical Imaging Artificial Intelligence Industry in China [J]. Chinese Medical Sciences Journal, 2019, 34(2): 84-88. |
[8] | Chinese Innovative Alliance of Industry, Education, Research and Application of Artificial Intelligence for Medical . Releasing of The White Paper on Medical Imaging Artificial Intelligence in China [J]. Chinese Medical Sciences Journal, 2019, 34(2): 89-89. |
[9] | Wu Qunli, Liang Xiaochun. Humanistic Spirit Contained in Traditional Chinese Medicine should Be Valued [J]. Chinese Medical Sciences Journal, 2019, 34(1): 51-54. |
[10] | Yang Xiaolin,Wang Zhe,Pan Hongjie,Zhu Yan. Ontology: Footstone for Strong Artificial Intelligence [J]. Chinese Medical Sciences Journal, 2009, 34(4): 277-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1