Chinese Medical Sciences Journal ›› 2020, Vol. 35 ›› Issue (4): 297-305.doi: 10.24920/003703
• Original Article • Previous Articles Next Articles
Junxiong Yin1, Cheng Yu2, Lixia Wei2, Chuanyong Yu1, Hongxing Liu1, Mingyang Du1, Feng Sun1, Chongjun Wang2, Xiaoshan Wang1, *()
Received:
2019-12-16
Accepted:
2020-03-24
Published:
2020-12-31
Online:
2020-09-28
Contact:
Xiaoshan Wang
E-mail:professor_wxs@163.com
This study investigated the validity of a machine learning algorithm in predicting asymptomatic carotid stenosis (ACS) with 2841 high risk individuals of stroke and yield a promising result. Besides, family history of dyslipidemia was found to be an important risk factor for ACS that deserved more attention clinically. |
Junxiong Yin, Cheng Yu, Lixia Wei, Chuanyong Yu, Hongxing Liu, Mingyang Du, Feng Sun, Chongjun Wang, Xiaoshan Wang. Detection of Asymptomatic Carotid Artery Stenosis in High-Risk Individuals of Stroke Using a Machine-Learning Algorithm[J].Chinese Medical Sciences Journal, 2020, 35(4): 297-305.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of demographic, clinical and laboratory characteristics between ACS and Non-ACS subjects (n=2841)"
Characteristics | ACS (n=326) | Non ACS (n=2515) | Sub-total | χ2 or t | P |
---|---|---|---|---|---|
Sex-male [n(%)] | 175 (53.7) | 1150 (45.7) | 1325 (46.6) | 7.339 | <0.01 |
Age (years, mean±SD) | 64.0±7.7 | 60.1±8.7 | 60.6±8.6 | 7.637 | <0.001 |
Education-primary school [n(%)] | 132 (40.5) | 1000 (39.8) | 1132 (39.8) | 0.064 | 0.800 |
Marriage-married [n(%)] | 292 (89.6) | 1737 (69.1) | 2029 (71.4) | 59.444 | <0.001 |
Physical exam index (mean±SD) | |||||
BMI | 25.0±3.3 | 26.0±3.2 | 25.7±3.2 | -4.169 | <0.001 |
Height (cm) | 164.3±7.5 | 163.2±28.0 | 163.3±26.5 | 0.712 | 0.476 |
Waistline (cm) | 82.6±17.2 | 67.1±36.0 | 68.9±34.6 | 7.664 | <0.001 |
Weight (kg) | 67.4±9.9 | 68.1±9.3 | 68.0±9.4 | -1.320 | 0.187 |
Concurrent diseases [n(%)] | |||||
Atrial fibrillation | 38 (11.7) | 149 (5.9) | 187 (6.6) | 15.420 | <0.001 |
DM | 107 (32.8) | 601 (23.9) | 708 (24.9) | 12.288 | 0.001 |
Hypertension | 275 (84.4) | 1971 (78.4) | 2246 (79.1) | 6.246 | 0.05 |
Hypercholesterolemia | 129 (39.6) | 961 (38.2) | 1090 (38.4) | 0.226 | 0.635 |
Life style [n(%)] | |||||
Overweight | 84 (25.8) | 1171 (46.6) | 1255 (44.2) | 50.599 | <0.001 |
Current smoking | 118 (36.2) | 855 (34.0) | 973 (34.2) | 0.620 | 0.431 |
Current drinking | 77 (23.6) | 312 (12.4) | 389 (13.7) | 30.710 | <0.001 |
Past smoking | 62 (19.0) | 520 (20.7) | 582 (20.5) | 0.487 | 0.485 |
Diet-positive | 47 (14.4) | 449 (17.9) | 496 (17.5) | 2.364 | 0.124 |
Lack Physical activity | 235 (72.1) | 1935 (76.9) | 2170 (76.4) | 3.767 | 0.053 |
Family history [n(%)] | |||||
Stroke | 86 (26.4) | 798 (31.7) | 884 (31.1) | 3.853 | <0.05 |
CHD | 31 (9.5) | 119 (4.7) | 150 (5.3) | 13.172 | <0.001 |
DM | 48 (14.7) | 241 (9.6) | 289 (10.2) | 8.349 | <0.01 |
Dyslipidemia | 2 (0.6) | 71 (2.8) | 73 (2.6) | 4.780 | <0.05 |
Laboratory results (mmol/L, mean±SD) | |||||
FPG | 6.6±2.1 | 6.1±1.8 | 6.1±1.9 | 4.503 | <0.001 |
Hcy | 11.3±7.7 | 11.1±7.7 | 11.1±7.7 | 0.506 | 0.613 |
HDL-c | 1.4±0.4 | 1.6±0.8 | 1.5±0.8 | -4.039 | <0.001 |
LDL-c | 3.2±0.8 | 3.0±0.8 | 3.0±0.8 | 4.878 | <0.001 |
TC | 5.1±0.9 | 5.1±1.0 | 5.1±1.0 | 1.006 | 0.315 |
TG | 1.8±1.3 | 1.7±1.3 | 1.7±1.3 | 0.327 | 0.744 |
Table 2
Risk factors and the weights for predicting moderate to severe carotid stenosis by algorithm model based on random forest machine learning"
Rank | Risk factor | Weight | Rank | Risk factor | Weight | |
---|---|---|---|---|---|---|
1 | Fh-Dyslipidemia | 0.118606411 | 16 | Dyslipidemia | 0.014717 | |
2 | LDL-c | 0.076347664 | 17 | Education level | 0.013718 | |
3 | HDL-c | 0.071114458 | 18 | Marriage | 0.013375 | |
4 | Age | 0.061408055 | 19 | Fh-DM | 0.01327 | |
5 | BMI | 0.061151368 | 20 | Current drinking | 0.013036 | |
6 | Waistline | 0.059055337 | 21 | Fh-CHD | 0.011855 | |
7 | Glucose | 0.05701681 | 22 | DM | 0.01076 | |
8 | Hcy | 0.054882752 | 23 | Fh-Stroke | 0.007797 | |
9 | TC | 0.054851202 | 24 | Current smoking | 0.007762 | |
10 | Height | 0.049662527 | 25 | Lack physical activity | 0.007582 | |
11 | TG | 0.047633703 | 26 | Hypertension | 0.007054 | |
12 | Weight | 0.047228036 | 27 | Past smoking | 0.007031 | |
13 | Occupation | 0.039596269 | 28 | Overweight | 0.006679 | |
14 | PayStyle | 0.035715073 | 29 | Sex | 0.005956 | |
15 | Diet | 0.020405623 | 30 | Atrial fibrillation | 0.004731 |
1. | DE Waard DD, Morris D, DE Borst GJ, et al. Asym-ptomatic carotid artery stenosis: who should be screened, who should be treated and how should we treat them? J Cardiovasc Surg 2017; 58(1):3-12. doi: 10.23736/S0021-9509.16.09770-6. |
2. |
Faxon DP, Creager MA, Smith SC, et al. American Heart Association. Atherosclerotic Vascular Disease Conference: Executive summary: Atherosclerotic Vascular Disease Conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2004; 109(21):2595-604. doi: 10.1161/01.CIR.0000128517.52533.DB.
pmid: 15173041 |
3. |
Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001; 89(4):305-16. doi: 10.1161/hh1601.095596.
pmid: 11509446 |
4. |
U.S. Preventive Services Task Force. Screening for carotid artery stenosis: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2007; 147(12):854-9. doi: 10.7326/0003-4819-147-12-200712180-00005.
doi: 10.7326/0003-4819-147-12-200712180-00005 pmid: 18087056 |
5. | Summaries for patients. Screening for carotid artery stenosis: U.S. Preventive Services Task Force recommendation statement. nn Intern Med 2014; 161(5). doi: 10.7326/P14-9030. |
6. |
Qureshi AI, Alexandrov AV, Tegeler CH, et al; American Society of Neuroimaging; Society of Vascular and Interventional Neurology. Guidelines for screening of extracranial carotid artery disease: a statement for healthcare professionals from the multidisciplinary practice guidelines committee of the American Society of Neuroimaging; cosponsored by the Society of Vascular and Interventional Neurology. J Neuroimaging 2007; 17(1):19-47. doi: 10.1111/j.1552-6569.2006.00085.x.
doi: 10.1111/j.1552-6569.2006.00085.x pmid: 17238868 |
7. |
Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the management of patients with extracranial carotid and vertebral artery disease. Stroke 2011; 42(8):e464-540. doi: 10.1161/STR.0b013e3182112cc2. Corrected and republished: Stroke 2011; 42(8):e542. Stroke 2012; 43(8):e80.
doi: 10.1161/STR.0b013e3182112cc2 pmid: 21282493 |
8. |
Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res 2017; 121(9):1092-101. doi: 10.1161/CIRCRESAHA.117.311312.
doi: 10.1161/CIRCRESAHA.117.311312 pmid: 28794054 |
9. |
Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics 2017; 37(2):505-15. doi: 10.1148/rg.2017160130.
doi: 10.1148/rg.2017160130 pmid: 28212054 |
10. |
Li B, Jiao Y, Fu C, et al. Contralateral artery enlargement predicts carotid plaque progression based on machine learning algorithm models in apoE-/- mice. Biomed Eng Online 2016; 15(Suppl 2):146. doi: 10.1186/s12938-016-0265-z.
doi: 10.1186/s12938-016-0265-z pmid: 28155719 |
11. |
Jacobowitz GR, Rockman CB, Gagne PJ, et al. A model for predicting occult carotid artery stenosis: Screening is justified in a selected population. J Vasc Surg 2003; 38(4):705-9. doi: 10.1016/s0741-5214(03)00730-4.
doi: 10.1016/s0741-5214(03)00730-4 pmid: 14560217 |
12. |
Greco G, Egorova NN, Moskowitz AJ, et al. A model for predicting the risk of carotid artery disease. Ann Surg 2013; 257(6):1168-73. doi: 10.1097/SLA.0b013e31827b9761.
pmid: 23333880 |
13. |
Breiman, Leo. Random forests. Machine learning 2001; 45(1):5-32. Available at https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf. Accessed: December 1, 2019.
doi: 10.1023/A:1010933404324 |
14. |
Wang X, Li W, Song F, et al. Carotid atherosclerosis detected by ultrasonography: A national cross-sectional study. J Am Heart Assoc 2018; 7(8):e008701. doi: 10.1161/JAHA.118.008701.
doi: 10.1161/JAHA.118.008701 pmid: 29622590 |
15. | Hua Y, Hui PJ, Xing YQ. Chinese stroke vascular ultrasound examination guidelines. Chin J Med Ultrasound (Electronic Edition) 2015; 12(8):599-610. Chinese. doi: 10.3877/cma.j.issn.1672-6448.2015.08.004. |
16. | Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007; 23(1):75-80. doi: 10.1159/000097034. |
17. |
Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: results of a systematic review and analysis. Stroke 2009; 40(10):e573-83. doi: 10.1161/STROKEAHA.109.556068.
doi: 10.1161/STROKEAHA.109.556068 pmid: 19696421 |
18. | Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning. In: OSDI' 16 proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. USA: Usenix Association; 2016. p. 265-83. |
19. |
Jiao Y, Chen R, Ke X, et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010; 50(2):589-99. doi: 10.1016/j.neuroimage.2009.12.047.
doi: 10.1016/j.neuroimage.2009.12.047 pmid: 20026220 |
20. |
Qureshi AI, Janardhan V, Bennett SE, et al. Who should be screened for asymptomatic carotid artery stenosis? Experience from the Western New York Stroke Screening Program. J Neuroimaging 2001; 11(2):105-11. doi: 10.1111/j.1552-6569.2001.tb00019.x.
doi: 10.1111/j.1552-6569.2001.tb00019.x pmid: 11296578 |
21. |
Jauk S, Kramer D, Quehenberger F, et al. Information adapted machine learning models for prediction in clinical workflow. Stud Health Technol Inform 2019; 260:65-72. doi: 10.3233/978-1-61499-971-3-65.
pmid: 31118320 |
22. |
Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017; 12(4):e0174944. doi: 10.1371/journal.pone.0174944.
doi: 10.1371/journal.pone.0174944 pmid: 28376093 |
23. |
Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2014; 13:8-17. doi: 10.1016/j.csbj.2014.11.005.
doi: 10.1016/j.csbj.2014.11.005 pmid: 25750696 |
24. |
Hu X, Reaven PD, Saremi A, et al. Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance. EURASIP J Bioinform Syst Biol 2016; 2016(1):14. doi: 10.1186/s13637-016-0049-6.
doi: 10.1186/s13637-016-0049-6 pmid: 27642290 |
25. |
Forsblad J, Gottsater A, Matzsch T, et al. Predictors of carotid endarterectomy in middle-aged individuals. Vasc Med 2001; 6(2):81-5. doi: 10.1177/1358836X0100600203.
pmid: 11530969 |
26. |
Zmysłowski A, Szterk A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16(1):188. doi: 10.1186/s12944-017-0579-2.
doi: 10.1186/s12944-017-0579-2 pmid: 28969682 |
27. |
Wiegman A, Gidding SS, Watts GF, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 2015; 36(36):2425-37. doi: 10.1093/eurheartj/ehv157.
doi: 10.1093/eurheartj/ehv157 pmid: 26009596 |
28. |
Defesche JC, Gidding SS, Harada-Shiba M, et al. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017; 3:17093. doi: 10.1038/nrdp.2017.93.
pmid: 29219151 |
29. |
Yin J, Yu C, Liu H, et al. A model to predict unstable carotid plaques in population with high risk of stroke. BMC Cardiovasc Disord 2020; 20(1):164. doi: 10.1186/s12872-020-01450-z.
doi: 10.1186/s12872-020-01450-z pmid: 32264828 |
[1] | Chen Xu, Huo Xiaofei, Wu Zhe, Lu Jingjing. Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers [J]. Chinese Medical Sciences Journal, 2021, 36(3): 196-203. |
[2] | Jiazheng Li, Lei Tang. Radiomics in Antineoplastic Agents Development: Application and Challenge in Response Evaluation [J]. Chinese Medical Sciences Journal, 2021, 36(3): 187-195. |
[3] | Guan Jian. Artificial Intelligence in Healthcare and Medicine: Promises, Ethical Challenges and Governance [J]. Chinese Medical Sciences Journal, 2019, 34(2): 76-83. |
[4] | Rong Yuan, Jie Wang, Li-li Guo. The Effect of Sleep Deprivation on Coronary Heart Disease [J]. Chinese Medical Sciences Journal, 2016, 31(4): 247-253. |
[5] | Wen-jing Li, Yi-ping Hu*, Min-min Zhu. Assessment of Stroke Volume Variation Perioperatively by Using Arterial Pressure with Cardiac Output [J]. Chinese Medical Sciences Journal, 2015, 30(2): 95-99. |
[6] | Zeng-zhi Yu, Shu-jun Jiang, Jun Li, Sheng Bi, Fei Li, Tao Xie, Rui Wang, Xiao-tan Zhang. Clinical Application of Loewenstein Occupational Therapy Cognitive Assessment Battery-Second Edition in Evaluating of Cognitive Function of Chinese Patients with Post-stroke Aphasia [J]. Chinese Medical Sciences Journal, 2013, 28(3): 167-171. |
[7] | Xiao-dong Qu, Resha Shrestha and Mao-de Wang* . Risk Factors Analysis on Traumatic Brain Injury Prognosis [J]. Chinese Medical Sciences Journal, 2011, 26(2): 98-102. |
[8] | Song Fu, Zhi-cun Feng and Schranz Dietmar. Factors Influencing Pleural Effusion after Fontan Operation:an Analysis with 95 Patients [J]. Chinese Medical Sciences Journal, 2010, 25(1): 38-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1