Chinese Medical Sciences Journal ›› 2021, Vol. 36 ›› Issue (1): 1-16.doi: 10.24920/003864
• Guideline & Consensus • Next Articles
Qiwen Yang1, Xiaoling Ma2, Fupin Hu3, Jing Zhang3, Tongwen Sun4, Baiyi Chen5, Yingchun Xu1, *(), Youning Liu6, *(
), China Medical Education Association , Expert Committee on Infectious Diseases, China Medical Education Association
Received:
2020-12-10
Accepted:
2020-12-14
Published:
2021-01-14
Online:
2021-01-14
Contact:
Yingchun Xu,Youning Liu
E-mail:xycpumch@139.com;liuyn301@126.com
To address the inconsistence of international polymyxin clinical breakpoints, experts from Chinese Committee on Antimicrobial Susceptibility Testing and Expert Committee on Infectious Diseases China Medical Education Association were convened to formulate this consensus statement on the testing and clinical interpretation of polymyxin susceptibility. Relevant recommendations are proposed accordingly for laboratorians and clinicians to streamline their daily work. |
Qiwen Yang,Xiaoling Ma,Fupin Hu,Jing Zhang,Tongwen Sun,Baiyi Chen,Yingchun Xu,Youning Liu,China Medical Education Association ,Expert Committee on Infectious Diseases, China Medical Education Association . Expert Consensus on Polymyxin Antimicrobial Susceptibility Testing and Clinical Interpretation[J].Chinese Medical Sciences Journal, 2021, 36(1): 1-16.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Performance of different methods for testing polymyxin susceptibility"
Testing method and organisms | Drug tested | Strains in terms of the indicated BMD-MIC values, n (%) | Performance evaluation (%) | |||||
---|---|---|---|---|---|---|---|---|
MIC ≤2 mg/L | MIC ≥4 mg/L | EA | CA | VME | ME | |||
E-test | ||||||||
Enterobacterales | Polymyxin B [ | 220 (95.7) | 10 (4.4) | 95.6 | 99.1 | 20.0 | 0 | |
Enterobacterales | Polymyxin B [ | 53 (69.7) | 23 (30.3) | 48.7 | 89.5 | 26.1 | 1.9 | |
Enterobacterales | Colistin [ | 51 (67.1) | 25 (32.9) | 75 | 92.1 | 12 | 5.9 | |
Enterobacterales | Colistin [ | 219 (67.4) | 106 (32.6) | 80.6 | 96.3 | 9.4 | 0.9 | |
E. coli | Colistin [ | 48 (90.6) | 5 (9.4) | 92.5 | 96.2 | 40.0 | 0 | |
K. pneumoniae | Colistin [ | 126 (61.2) | 80 (38.8) | 79.8 | 99 | 1.6 | 2.5 | |
E. cloacae | Colistin [ | 23 (59.0) | 16 (41.0) | 72.2 | 87.2 | 25.0 | 4.3 | |
P. aeruginosa | Colistin [ | 78 (100) | 0 (0) | 79.5 | 93.6 | - | 6.4 | |
A. baumannii | Colistin [ | 2 (10.0) | 18 (90.0) | 55.0 | 65.0 | 38.9 | 0 | |
A. baumannii | Colistin [ | 42 (100) | 0 (0) | 11.9 | 100 | - | 0 | |
A. baumannii | Polymyxin B [ | 42 (100) | 0 (0) | 85.7 | 100 | - | 0 | |
Disk diffusion method | ||||||||
Enterobacterales | IE | IE | IE | NA | IE | IE | IE | |
P. aeruginosa | Colistin [ | 78 (100) | 0 (0) | NA | 100 | - | 0 | |
A. baumannii | IE | IE | IE | NA | IE | IE | IE | |
BD Phoenix | ||||||||
Enterobacterales | Colistin [ | 219 (67.4) | 106 (32.6) | 76.1 | 92.0 | 24.5 | 0 | |
E. coli | Colistin [ | 48 (90.6) | 5 (9.4) | - | 98.1 | 20.0 | 0 | |
K. pneumoniae | Colistin [ | 126 (61.2) | 80 (38.8) | - | 96.1 | 10.0 | 0 | |
E. cloacae | Colistin [ | 23 (59.0) | 16 (41.0) | - | 64.1 | 87.5 | 0 | |
P. aeruginosa | IE | IE | IE | IE | IE | IE | IE | |
A. baumannii | Colistin [ | 88 (75.2) | 29 (24.8) | 91.5 | 88.9 | 41.4 | 1.1 | |
MicroScan | ||||||||
Gram-negative bacteria | Colistin [ | 52 (28.1) | 133 (71.9) | IE | 91.9 | 0.8 | 26.9 | |
Enterobacterales | Colistin [ | 44 (57.9) | 32 (42.1) | IE | 88.2 | 4.0 | 15.8 | |
Enterobacterales | Colistin [ | 32 (21.9) | 114 (78.1) | IE | 99.3 | 0 | 3.1 | |
Non-fermentative organism | Colistin [ | 20 (51.3) | 19 (48.7) | IE | 64.1 | 5.3 | 65.0 | |
Vitek 2 | ||||||||
Enterobacterales | Colistin [ | 60 (75.9) | 16 (24.1) | 93.4 | 88.2 | 36.0 | 0 | |
Enterobacterales | Polymyxin B [ | 47 (61.8) | 29 (38.2) | 96.1 | 94.7 | 3.7 | 6.1 | |
Enterobacterales | Colistin [ | 219 (67.4) | 106 (32.6) | 75.9 | 90.5 | 29.2 | 0 | |
E. coli | Colistin [ | 48 (90.6) | 5 (9.4) | - | 94.3 | 60.0 | 0 | |
K. pneumoniae | Colistin [ | 126 (61.2) | 80 (38.8) | 81.7 | 94.2 | 15.0 | 0 | |
K. pneumoniae | Colistin [ | 1 (2.4) | 40 (97.6) | 75.6 | 100 | 0 | 0 | |
E. cloacae | Colistin [ | 23 (59.0) | 16 (41.0) | - | 66.7 | 81.3 | 0 | |
P. aeruginosa | IE | IE | IE | IE | IE | IE | IE | |
A. baumannii | Colistin [ | 88 (75.2) | 29 (24.8) | 88.9 | 89.7 | 37.9 | 1.1 | |
A. baumannii | Colistin [ | 42 (100) | 0 (0) | 26.2 | 100 | - | 0 | |
A. baumannii | Polymyxin B [ | 42 (100) | 0 (0) | 57.1 | 100 | - | 0 | |
Agar dilution method | ||||||||
A. baumannii | Colistin [ | 88 (75.2) | 29 (24.8) | 93.2 | 87.2 | 3.4 | 15.9 | |
A. baumannii | Colistin [ | 42 (100) | 0 (0) | 92.8 | 85.7 | - | 16.7 | |
A. baumannii | Polymyxin B [ | 42 (100) | 0 (0) | 76.2 | 100 | - | 0 | |
Colistin agar test | ||||||||
Enterobacterales | Colistin [ | 152 (43.7) | 196 (56.3) | 99.7 | 99.7 | 0.5 | 0 | |
P. aeruginosa | Colistin [ | 135 (91.2) | 13 (8.8) | 99.3 | 100 | 0 | 0 | |
A. baumannii | Colistin [ | 60 (45.8) | 71 (54.2) | 88.5 | 92.3 | 14.3 | 0 | |
Colistin broth disk elution | ||||||||
Enterobacterales | Colistin [ | 152 (43.7) | 196 (56.3) | 94.3 | 98.6 | 2.5 | 0 | |
P. aeruginosa | Colistin [ | 135 (91.2) | 13 (8.8) | 96.6 | 99.3 | 0 | 0.7 | |
A. baumannii | Colistin [ | 60 (45.8) | 71 (54.2) | 93.1 | 95.4 | 5.6 | 3.3 |
Table 2
Breakpoints of polymyxin susceptibility testing recommended by international organizations [1-3, 13-14]"
Species | CLSI 2019 (mg/L) | CLSI 2019 (mg/L) | CLSI 2020 (mg/L) | EUCAST 2020 (mg/L) | USCAST 2020 (mg/L)a | USFDA 2020 (mg/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Colistin | Polymyxin B | Colistin or polymyxin B | Colistin | Colistin or polymyxin B | Colistin or polymyxin B | |||||||||||||||
S | I | R | S | I | R | I | R | S | R | ATU | S | R | I | R | ||||||
Enterobac- terales | - | - | - | - | - | - | ≤2 | ≥4 | ≤2 | >2 | - | ≤2 | ≥4 | - | - | |||||
P. aeruginosa | ≤2 | - | ≥4 | ≤2 | 4 | ≥8 | ≤2 | ≥4 | ≤2 | >2 | 4 | ≤2 | ≥4 | Reb | Reb | |||||
A. baumannii | ≤2 | - | ≥4 | ≤2 | - | ≥4 | ≤2 | ≥4 | ≤2 | >2 | - | ≤2 | ≥4 | Nc | Nc |
Table 3
The epidemiological cutoff values of polymyxin for various bacterial species released by the European Committee on Antimicrobial Susceptibility Testing (as of July 2020) [15]"
Species | Epidemiological cutoff (ECOFF) value (mg/L) | Cases |
---|---|---|
E. coli | 2.0 | 6014 |
Klebsiella aerogenes | 2.0 | 266 |
Klebsiella oxytoca | 2.0 | 405 |
K. pneumoniae | 2.0 | 1805 |
E. cloacae | 2.0 | 849 |
P. aeruginosa | 4.0 | 19 482 |
A. baumannii | 2.0 | 2879 |
Table 4
The PK/PD (fAUC24 h /MIC) targets of polymyxins against various gram-negative bacteria"
Drug | Animal model | Species | PK/PD target values required to achieve CFU reduction (medians) | |
---|---|---|---|---|
1-log10 | 2-log10 | |||
Colistin[ | Murine thigh infection | P. aeruginosa | 6.6 - 10.9 | 7.4 - 13.7 |
Colistin[ | Murine thigh infection | A. baumannii | 3.5 - 13.9 | 7.4 - 17.6 |
Colistin[ | Murine pneumonia | P. aeruginosa | 43.3 - 57.9 | 51.8 - 105 |
Colistin[ | Murine pneumonia | A. baumannii | 20.8 | 36.8 |
Polymyxin B[ | Murine hind limbs infection | K. pneumoniae | 3.7 - 28.0 | / |
Table 5
The PTA and CFR derived from recommended CMS dosing regimens in terms of varying renal function levels"
Dosing regimen | Sources | K. pneumoniae | E. coli | ||||
---|---|---|---|---|---|---|---|
PTA (%) | CFR | PTA (%) | CFR | ||||
MIC50=0.5 | MIC90=2 | MIC50=0.5 & MIC90=0.5 | |||||
CrCl ≥80 mL/min | |||||||
150 mg, q12h | EMA,[ | 92.7 | 64.4 | 85.4 | 92.7 | 90.4 | |
180 mg, q12h | Nation [ | 97.9 | 69.2 | 87.9 | 97.9 | 92.3 | |
150 mg, q8h | Siriraj Hospital regimen [ | 98.7 | 79.7 | 92.0 | 98.7 | 95.1 | |
CrCl 51 to 79 mL/min | |||||||
114 mg, q12h | FDA [ | 96.0 | 72.0 | 89.9 | 96.0 | 94.1 | |
150 mg, q12h | Siriraj Hospital regimen,[ | 97.3 | 78.3 | 92.7 | 97.3 | 95.8 | |
CrCl 30 to 50 mL/min | |||||||
150 mg, q12h | FDA [ | 97.6 | 71.1 | 91.3 | 97.6 | 95.6 | |
100 mg, q12h | Siriraj Hospital regimen [ | 98.9 | 85.7 | 95.7 | 98.9 | 97.9 | |
110 mg, q12h | Nation [ | 99.0 | 87.4 | 96.4 | 99.0 | 98.2 | |
125 mg, q12h | EMA [ | 99.2 | 89.8 | 97.2 | 99.2 | 98.5 | |
CrCl 11 to 29 mL/min | |||||||
60 mg, q24h | FDA [ | 96.3 | 56.2 | 86.3 | 96.3 | 97.9 | |
150 mg, q24h | EMA,[ | 99.7 | 89.4 | 97.4 | 99.7 | 99.6 | |
180 mg, q24h | Nation [ | 99.6 | 89.3 | 97.4 | 99.6 | 99.9 | |
CrCl ≤10 mL/min | |||||||
60 mg, q24h | FDA [ | 99.5 | 77.1 | 94.5 | 99.5 | 100 | |
120 mg, q24h | EMA [ | 99.9 | 94.9 | 98.9 | 99.9 | 100 | |
150 mg, q24h | Nation [ | 100 | 97.4 | 99.5 | 100 | 100 |
Table 6
The PTA derived from different polymyxin B dosing regimens in cystic fibrosis patients in terms of varying renal function levels [24]"
CrCl (mL/min) | MIC (mg/L) | PTA of different polymyxin B dosing regimens (%) | ||||
---|---|---|---|---|---|---|
1.5 mg/(kg·d) | 2.0 mg/(kg·d) | 2.5 mg/(kg·d) | 3.0 mg/(kg·d) | Loading dose 2.5 mg/kg + 2.5 mg/(kg·d) | ||
34 | 0.03125 | 100 | 100 | 100 | 100 | 100 |
0.0625 | 100 | 100 | 100 | 100 | 100 | |
0.125 | 100 | 100 | 100 | 100 | 100 | |
0.25 | 99.3 | 99.8 | 99.9 | 99.9 | 100 | |
0.5 | 19.0 | 64.0 | 97.0 | 99.3 | 99.8 | |
1 | 0.1 | 1.8 | 3.0 | 7.6 | 19.5 | |
2 | 0 | 0 | 0 | 0.1 | 1.7 | |
105 | 0.03125 | 100 | 100 | 100 | 100 | 100 |
0.0625 | 100 | 100 | 100 | 100 | 100 | |
0.125 | 96.0 | 99.0 | 100 | 100 | 100 | |
0.25 | 69.0 | 84.0 | 92.0 | 96.0 | 99.0 | |
0.5 | 15.0 | 38.0 | 57.9 | 70.0 | 81.0 | |
1 | 0.1 | 0.2 | 7.0 | 15.0 | 35.0 | |
2 | 0 | 0 | 0 | 0.1 | 1.7 | |
178 | 0.03125 | 100 | 100 | 100 | 100 | 100 |
0.0625 | 100 | 100 | 100 | 100 | 100 | |
0.125 | 74.0 | 97.0 | 99.0 | 100 | 100 | |
0.25 | 15.0 | 32.0 | 56.0 | 78.0 | 94.0 | |
0.5 | 1.0 | 4.0 | 8.0 | 15.0 | 27.0 | |
1 | 0 | 0 | 0.6 | 1 | 0 | |
2 | 0 | 0 | 0 | 0 | 0 |
Table 7
The PTA derived from recommended polymyxin B dosing regimens at indicated MIC levels * [26]"
Dosing regimen | Body weight (kg) | PTA at indicated MIC level (%) | ||||||
---|---|---|---|---|---|---|---|---|
0.125 mg/L | 0.25 mg/L | 0.5 mg/L | 1 mg/L | 2 mg/L | 4 mg/L | 8 mg/L | ||
100 mg q12h | ||||||||
50 | 100 | 100 | 100 | 39.1 | 2.0 | 0.2 | 0 | |
75 | 100 | 100 | 99.9 | 24.7 | 1.1 | 0.1 | 0 | |
110 | 100 | 100 | 94.3 | 16.5 | 0.8 | 0 | 0 | |
1 mg/kg TBW q12h | ||||||||
50 | 100 | 100 | 39.1 | 2 | 0.2 | 0 | 0 | |
75 | 100 | 100 | 82.1 | 7.7 | 0.3 | 0 | 0 | |
110 | 100 | 100 | 97.6 | 24.4 | 0.2 | 0.1 | 0 | |
1.5 mg/kg TBW q12h | ||||||||
50 | 100 | 100 | 93.5 | 10.7 | 0.3 | 0 | 0 | |
75 | 100 | 100 | 99.7 | 40.2 | 2.1 | 0.1 | 0 | |
110 | 100 | 100 | 100 | 74.7 | 7.6 | 0.3 | 0 | |
Loading dose 2.5 mg/kg + 100 mg q12h | ||||||||
50 | 100 | 100 | 100 | 61.3 | 3.1 | 0.2 | 0 | |
75 | 100 | 100 | 100 | 81.3 | 8.2 | 0.3 | 0 | |
110 | 100 | 100 | 100 | 93.1 | 16.8 | 0.9 | 0 | |
Loading dose 2.5 mg/kg + 1.5 mg/kg TBW q12h | ||||||||
50 | 100 | 100 | 100 | 45.0 | 2.0 | 0.2 | 0 | |
75 | 100 | 100 | 100 | 85.5 | 9.0 | 0.3 | 0 | |
110 | 100 | 100 | 100 | 98.2 | 26.8 | 1.5 | 0.1 |
Contributors
(in alphabetical order of family name)"
Baiyi Chen | Department of Infectious Diseases, the First Affiliated Hospital of China Medical University |
---|---|
Yihai Gu | Department of Laboratory Medicine, Hanzhong 3201 Hospital |
Li Gu | Department of Infectious Diseases, Beijing Chaoyang Hospital affiliated to Capital Medical University |
Fupin Hu | Institute of Antibiotics, Huashan Hospital, Fudan University |
Jihong Hu | National Center for Clinical Laboratories |
Yunjian Hu | Department of Laboratory Medicine, Beijing Hospital |
Zhidong Hu | Department of Laboratory Medicine, Tianjin Medical University General Hospital |
Mei Kang | Department of Laboratory Medicine, West China Hospital, Sichuan University |
Jian Li | Monash University, Australia |
Junming Li | Department of Laboratory Medicine, the First Affiliated Hospital of Nanchang University |
Xin Li | Department of Pharmacy, the Third Hospital of Changsha |
Yi Li | Department of Laboratory Medicine, Henan Provincial People’s Hospital |
Kang Liao | Department of Laboratory Medicine, the First Affiliated Hospital, Sun Yat-Sen University |
Yongping Lin | Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University |
Wen’en Liu | Department of Laboratory Medicine, Xiangya Hospital, Central South University |
Yong Liu | Department of Laboratory Medicine, Shengjing Hospital affiliated to China Medical University |
Youning Liu | Department of Respiratory Medicine, the First Medical Center of PLA General Hospital |
Yuqing Liu | Shandong Academy of Agricultural Sciences |
Zhengyin Liu | Department of Infectious Diseases, Peking Union Medical College Hospital |
Zhiming Lu | Department of Laboratory Medicine, Shandong Provincial Hospital |
Xiaoju Lv | Department of Infectious Diseases, West China Hospital, Sichuan University |
Yuan Lv | Institute of Clinical Pharmacology, Peking University First Hospital |
Xiaojun Ma | Department of Infectious Diseases, Peking Union Medical College Hospital |
Xiaoling Ma | Department of Laboratory Medicine, the First Affiliated Hospital, University of Science and Technology of China |
Dan Mei | Department of Pharmacy, Peking Union Medical College Hospital |
Yuxing Ni | Department of Clinical Microbiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University |
Ziyong Sun | Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology |
Tongwen Sun | General ICU, the First Affiliated Hospital of Zhengzhou University |
Yiwei Tang | Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, USA |
Minggui Wang | Institute of Antibiotics, Huashan Hospital, Fudan University |
Rui Wang | Laboratory of Clinical Pharmacology, the First Medical Center of PLA General Hospital |
Lianhua Wei | Department of Laboratory Medicine, Gansu Provincial People’s Hospital |
Wenjuan Wu | Department of Laboratory Medicine, Shanghai East Hospital affiliated to Tongji University |
Yingchun Xu | Department of Laboratory Medicine, Peking Union Medical College Hospital |
Boren Xue | Department of Infectious Diseases, Affiliated Hospital of Taiwan University School of Medicine |
Bin Yang | Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University |
Qiwen Yang | Department of Laboratory Medicine, Peking Union Medical College Hospital |
Qing Yang | Department of Laboratory Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine |
Yunsong Yu | Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine |
Hua Yu | Department of Laboratory Medicine, Sichuan Provincial People’s Hospital |
Jing Zhang | Institute of Antibiotics, Huashan Hospital, Fudan University |
Xiuzhen Zhang | Department of Laboratory Medicine, Beijing Hospital |
Jianhong Zhao | Department of Laboratory Medicine, the Second Hospital of Hebei Medical University |
Bo Zheng | Department of Infection, Peking University People’s Hospital |
Demei Zhu | Institute of Antibiotics, Huashan Hospital, Fudan University |
Lei Zhu | Department of Laboratory Medicine, Shanxi Children’s Hospital |
Chao Zhuo | Guangzhou Institute of Respiratory Health |
1. | Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 30th Edition. USA: Wayne, 2020. P. 38-48. |
2. | The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020.http://www.eucast.org . |
3. |
Pogue JM, Jones RN, Bradley JS, et al. Polymyxin susceptibility testing and interpretive breakpoints: recommendations from the United States Committee on Antimicrobial Susceptibility Testing (USCAST). Antimicrob Agents Chemother 2020; 64:e01495-19. doi: 10.1128/AAC.01495-19.
doi: 10.1128/AAC.01495-19 pmid: 31767718 |
4. | Li HQ, Niu M, Liu SM, et al. Susceptibility of CRE to polymyxin B and the difference between two testing methods. Chin J Infect Control 2019; 18(11):1059-63.Chinese. |
5. |
Chew KL, La MV, Lin RTP, et al. Colistin and Polymyxin B susceptibility testing for carbapenem-resistant and MCR-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with Broth Microdilution. J Clin Microbiol 2017; 55(9):2609-16. doi: 10.1128/JCM.00268-17.
doi: 10.1128/JCM.00268-17 pmid: 28592552 |
6. |
Pfennigwerth N, Kaminski A, Korte-Berwanger M, et al. Evaluation of six commercial products for colistin susceptibility testing in Enterobacterales. Clin Microbiol Infect 2019; 25(11):1385-9. doi: 10.1016/j.cmi.2019.03.017.
doi: 10.1016/j.cmi.2019.03.017 pmid: 30928563 |
7. |
Dafopoulou K, Zarkotou O, Dimitroulia E, et al. Comparative evaluation of colistin susceptibility testing methods among carbapenem-nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 2015; 59(8):4625-30. doi: 10.1128/AAC.00868-15.
doi: 10.1128/AAC.00868-15 pmid: 26014928 |
8. |
van der Heijden IM, Levin AS, de Pedri EH, et al. Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins. Ann Clin Microbiol Antimicrob 2007; 6:8. doi: 10.1186/1476-0711-6-8.
doi: 10.1186/1476-0711-6-8 pmid: 17697363 |
9. |
Singhal L, Sharma M, Verma S, et al. Comparative evaluation of broth microdilution with polystyrene and glass-coated plates, agar dilution, E-Test, Vitek, and disk diffusion for susceptibility testing of colistin and polymyxin B on carbapenem-resistant clinical isolates of Acinetobacter baumannii. Microb Drug Resist 2018; 24(8):1082-8. doi: 10.1089/mdr.2017.0251.
doi: 10.1089/mdr.2017.0251 pmid: 29406804 |
10. |
Vourli S, Dafopoulou K, Vrioni G, et al. Evaluation of two automated systems for colistin susceptibility testing of carbapenem-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 2017; 72(9):2528-30. doi: 10.1093/jac/dkx186.
doi: 10.1093/jac/dkx186 pmid: 28605445 |
11. |
Jayol A, Nordmann P, Andre C, et al. Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. J Antimicrob Chemother 2018; 73(5):1272-8. doi: 10.1093/jac/dky012.
doi: 10.1093/jac/dky012 pmid: 29481600 |
12. |
Humphries RM, Green DA, Schuetz AN, et al. Multicenter evaluation of colistin broth disk elution and colistin agar test: a report from the clinical and laboratory standards institute. J Clin Microbiol 2019; 57(11):e01269-19. doi: 10.1128/JCM.01269-19.
doi: 10.1128/JCM.01269-19 pmid: 31511331 |
13. | CLSI. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Pennsylvania: Clinical and Laboratory Standards Institute, 2019. |
14. | U.S. Food & Drug Administration. Antibacterial Susceptibility Test Interpretive Criteria. Available from https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria . Accessed: November 9, 2020. |
15. | European Committee on Antimicrobial Susceptibility Testing. The EUCAST Subcommittee on MIC distributions and ECOFFs. Available from https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=837&Specium=-1 . Accessed: November 9, 2020. |
16. |
Cheah SE, Wang J, Nguyen VT, et al. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother 2015; 70(12):3291-7. doi: 10.1093/jac/dkv267.
doi: 10.1093/jac/dkv267 pmid: 26318190 |
17. |
Landersdorfer CB, Wang J, Wirth V, et al. Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J Antimicrob Chemother 2017; 73(2):462-8. doi: 10.1093/jac/dkx409.
doi: 10.1093/jac/dkx409 pmid: 29149294 |
18. |
Tsuji BT, Pogue JM, Zavascki AP, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019; 39(1):10-39. doi: 10.1002/phar.2209.
doi: 10.1002/phar.2209 pmid: 30710469 |
19. | European Medicines Agency. European Medicines Agency completes review of polymyxin-based medicines. https://www.ema.europa.eu/en/news/european-medicines-agency-completes-review-polymyxin-based-medicines. Released October 24, 2014; accessed November 9, 2020. |
20. | FDA Approved Drug Products. Label and Approval History for Coly-Mycin M, NDA 050108. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/050108s033lbl.pdf. Accessed November 9, 2020. |
21. |
Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically ill patients. Clin Infect Dis 2017; 64(5):565-71. doi: 10.1093/cid/ciw839.
doi: 10.1093/cid/ciw839 pmid: 28011614 |
22. |
Rattanaumpawan P, Lorsutthitham J, Ungprasert P, et al. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother 2010; 65(12):2645-9. doi: 10.1093/jac/dkq360.
doi: 10.1093/jac/dkq360 pmid: 20876621 |
23. | Jitaree K, Sathirakul K, Houngsaitong J, et al. Pharmacokinetic/Pharmacodynamic (PK/PD) simulation for dosage optimization of colistin against carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Escherichia coli. Antibiotics (Basel) 2019; 8(3):125. doi: 10.3390/antibiotics8030125. |
24. |
Avedissian S, Miglis C, Kubin CJ, et al. Polymyxin B pharmacokinetics in adult cystic fibrosis patients. Pharmacotherapy 2018; 38(7):730-8. doi: 10.1002/phar.2129.
doi: 10.1002/phar.2129 pmid: 29800496 |
25. |
Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63(5):575-82. doi: 10.1093/cid/ciw504. Erratum in Clin Infect Dis 2017; 64(9):1298. Doi 10.1093/cid/ciw799; Clin Infect Dis 2017; 65(8):1435; doi 10.1093/cid/cix587; Clin Infect Dis 2017; 65(12):2161. doi 10.1093/cid/cix759.
doi: 10.1093/cid/ciw504 pmid: 27521441 |
26. |
Miglis C, Rhodes NJ, Avedissian S, et al. Population pharmacokinetics of polymyxin B in acutely ill adult patients. Antimicrob Agents Chemother 2018; 62(3):e01475-17. doi: 10.1128/AAC.01475-17.
doi: 10.1128/AAC.01475-17 pmid: 29311071 |
27. | Society of Critical Care Medicine, Society of Evi-dence-based and Translational Infectious Diseases of Chinese Research Hospital Association. Chinese expert consensus on clinical use of polymyxins. Chin Critic Care Med 2019; 28(10):1218-22. Chinese. doi: 10.3760/cma.j.issn.2095-4352.2019.10.003. |
28. |
Medeiros GS, Rigatto MH, Falci DR, et al. Combination therapy with polymyxin B for carbapenemase-producing Klebsiella pneumoniae bloodstream infection. Int J Antimicrob Agents 2019; 53(2):152-7. doi: 10.1016/j.ijantimicag.2018.10.010.
doi: 10.1016/j.ijantimicag.2018.10.010 pmid: 30722960 |
29. |
Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55(7):943-50. doi: 10.1093/cid/cis588.
doi: 10.1093/cid/cis588 pmid: 22752516 |
30. |
Batirel A, Balkan II, Karabay O, et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis 2014; 33(8):1311-22. doi: 10.1007/s10096-014-2070-6.
doi: 10.1007/s10096-014-2070-6 pmid: 24532009 |
31. |
Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2014; 58(9):5598-601. doi: 10.1128/AAC.02435-13.
doi: 10.1128/AAC.02435-13 pmid: 24982065 |
32. |
Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis 2018; 18(4):391-400. doi: 10.1016/S1473-3099(18)30099-9.
doi: 10.1016/S1473-3099(18)30099-9 pmid: 29456043 |
33. |
Abdellatif S, Trifi A, Daly F, et al. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care 2016; 6(1):26. doi: 10.1186/s13613-016-0127-7.
doi: 10.1186/s13613-016-0127-7 pmid: 27033711 |
34. |
Valachis A, Samonis G, Kofteridis DP. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia. Crit Care Med 2015; 43(3):527-33. doi: 10.1097/CCM.0000000000000771.
doi: 10.1097/CCM.0000000000000771 pmid: 25493971 |
35. |
Vardakas KZ, Voulgaris GL, Samonis G, et al. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: a systematic review and meta-analysis. Int J Antimicrob Agents 2018; 51(1):1-9. doi: 10.1016/j.ijantimicag.2017.05.016.
doi: 10.1016/j.ijantimicag.2017.05.016 pmid: 28669836 |
36. |
de Bonis P, Lofrese G, Scoppettuolo G, et al. Intraventricular versus intravenous colistin for the treatment of extensively drug resistant Acinetobacter baumannii meningitis. Eur J Neurol 2016; 23(1):68-75. doi: 10.1111/ene.12789.
pmid: 26228051 |
37. |
Falagas ME, Bliziotis IA, Tam VH. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis: a systematic review of the available evidence. Int J Antimicrob Agents 2007; 29(1):9-25. doi: 10.1016/j.ijantimicag.2006.08.024.
doi: 10.1016/j.ijantimicag.2006.08.024 pmid: 17126534 |
38. |
Couet W, Gregoire N, Gobin P, et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther 2011; 89(6):875-9. doi: 10.1038/clpt.2011.48.
doi: 10.1038/clpt.2011.48 pmid: 21544080 |
39. |
Sorlí L, Luque S, Li J, et al. Colistin for the treatment of urinary tract infections caused by extremely drug-resistant Pseudomonas aeruginosa: Dose is critical. J Infect 2019; 79(3):253-61. doi: 10.1016/j.jinf.2019.06.011.
pmid: 31265867 |
40. |
Liang Q, Huang M, Xu Z. Early use of polymyxin B reduces the mortality of carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Braz J Infect Dis 2019; 23(1):60-5. doi: 10.1016/j.bjid.2018.12.004.
doi: 10.1016/j.bjid.2018.12.004 pmid: 30796888 |
41. |
Rigatto MH, Falci DR, Lopes NT, et al. Clinical features and mortality of patients on renal replacement therapy receiving polymyxin B. Int J Antimicrob Agents 2016; 47(2):146-50. doi: 10.1016/j.ijantimicag.2015.11.007.
doi: 10.1016/j.ijantimicag.2015.11.007 pmid: 26742727 |
42. |
Ismail B, Shafei MN, Harun A, et al. Predictors of polymyxin B treatment failure in Gram-negative healthcare-associated infections among critically ill patients. J Microbiol Immunol Infect 2018; 51(6):763-9. doi: 10.1016/j.jmii.2017.03.007.
doi: 10.1016/j.jmii.2017.03.007 pmid: 28716359 |
43. |
Dickstein Y, Lellouche J, Ben DAM, et al. Treatment outcomes of colistin- and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis 2019; 69(5):769-76. doi: 10.1093/cid/ciy988.
doi: 10.1093/cid/ciy988 pmid: 30462182 |
44. |
Mattos KPH, Gouvêa IR, Quintanilha JCF, et al. Polymyxin B clinical outcomes: A prospective study of patients undergoing intravenous treatment. J Clin Pharm Ther 2019; 44(3):415-9. doi: 10.1111/jcpt.12801.
doi: 10.1111/jcpt.12801 pmid: 30666679 |
45. |
Maniara BP, Healy LE, Doan T. Risk of nephrotoxicity associated with nonrenally adjusted intravenous polymyxin b compared to traditional dosing. J Pharm Pract 2020; 33(3):287-92. doi: 10.1177/0897190018799261.
doi: 10.1177/0897190018799261 pmid: 30253682 |
46. |
Sirijatuphat R, Limmahakhun S, Sirivatanauksorn V, et al. Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother 2015; 59(6):3224-32. doi: 10.1128/AAC.00280-15.
doi: 10.1128/AAC.00280-15 pmid: 25801556 |
47. |
Liu Q, Li W, Feng Y, et al. Efficacy and safety of polymyxins for the treatment of Acinetobacter baumannii infection: a systematic review and meta-analysis. PLoS One 2014; 9(6):e98091. doi: 10.1371/journal.pone.0098091.
doi: 10.1371/journal.pone.0098091 pmid: 24911658 |
48. |
Pereira GH, Muller PR, Levin AS. Salvage treatment of pneumonia and initial treatment of tracheobronchitis caused by multidrug-resistant Gram-negative bacilli with inhaled polymyxin B. Diagn Microbiol Infect Dis 2007; 58(2):235-40. doi: 10.1016/j.diagmicrobio.2007.01.008.
doi: 10.1016/j.diagmicrobio.2007.01.008 pmid: 17350201 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1