Chinese Medical Sciences Journal ›› 2022, Vol. 37 ›› Issue (4): 320-330.doi: 10.24920/004059
Previous Articles Next Articles
Ran Li1, Zhanyun Lv2, Yanxin Li3, Wei Li4, Yanlei Hao4, *()
Received:
2022-01-06
Accepted:
2022-04-02
Published:
2022-12-31
Online:
2022-09-29
Contact:
Yanlei Hao
E-mail:yanleihao301@live.com
Ran Li, Zhanyun Lv, Yanxin Li, Wei Li, Yanlei Hao. Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer’s Disease Mouse Model Carrying a PSEN1 p.G378E Mutation[J].Chinese Medical Sciences Journal, 2022, 37(4): 320-330.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1.
Sequencing peaks of TYROBP knockout mice, AD mice with PSEN1 p.G???E knockin and hybrid mice. A-C: The sequencing peaks of TYROBP gene knockout mice; A. WT, B. heterozygous type (Tyrobp+/-), C. homozygous type (Tyrobp-/-). D-F: The sequencing peaks of AD mice knocked in PSEN1 p.G???E; D. WT, E. heterozygous type (PSEN1G378E/WT), F. homozygous type (PSEN1G378E/G378E). G-I: The sequencing peaks of hybrid mice; G. WT, H. heterozygous type (PSEN1G378E/WT; Tyrobp+/-), I. homozygous type (PSEN1G378E/G378E; Tyrobp-/-). The arrows indicate the positions of gene knock-in. TYROBP: TYRO protein kinase-binding protein; AD: Alzheimer’s disease; PSEN1: presenilin 1; WT: wild type."
Figure 2.
TYROBP deficiency improved learning ability of PSEN1 p.G???E knockin early-onset AD mouse models. (A-E) Expression of TYROBP in the hippocampus of the early-onset AD models. (A) immunofluorescence results of hippocampal sections to detect IBA1-positive microglia and the TYROBP expressing cells in hippocampus; (B) representative western blots of hippocampal lysate; (C-E) semi-quantitative analysis results of western blots, **P < 0.01 (n=4). (F-H) Results of the hidden platform test in the Morris water maze, during which escape latency (defined as the time taken to find the platform) was measured on the 5th day of training, *P < 0.05 (n = 8). (I) Swimming trajectories in the hidden platform test on day 1 and 5 day of training. IBA1: ionized calcium binding adapter molecule-1."
Table 1.
The latency of escape of the AD mouse models (mean ± SD, s, n = 8)"
Groups | Day1 | Day2 | Day3 | Day4 | Day5 |
---|---|---|---|---|---|
WT | 46.51 ± 17.29 | 42.40 ± 11.79 | 27.55 ± 12.73 | 13.81 ± 9.78 | 6.21 ± 3.89 |
Tyrobp+/- | 58.69 ± 3.71 | 47.48 ± 17.69 | 35.69 ± 20.93 | 30.59 ± 19.32 | 17.27 ± 6.89** |
Tyrobp-/- | 54.33 ± 16.05 | 46.53 ± 19.59 | 44.55 ± 16.91 | 19.34 ± 13.30 | 14.83 ± 12.72+ |
PSEN1G378E/WT | 60.00 ± 0.00 | 54.79 ± 9.65 | 47.24 ± 18.64* | 32.71 ± 26.63 | 32.66 ± 17.24** |
PSEN1G378E/G378E | 60.00 ± 0.00 | 57.48 ± 7.14 | 54.75 ± 9.78** | 41.98 ± 14.52* | 34.90 ± 17.25*** |
PSEN1G378E/WT; Tyrobp+/- | 57.25 ± 7.77 | 47.15 ± 15.89 | 39.04 ± 20.72 | 22.29 ± 18.91 | 13.04 ± 8.66# |
PSEN1G378E/G378E; Tyrobp-/- | 56.15 ± 10.89 | 46.38 ± 21.10 | 40.46 ± 18.86 | 21.35 ± 11.87 | 9.31 ± 5.27+ |
Figure 3.
Levels of total and (hyper)phosphorylated Tau in the hippocampus of PSEN1 p.G???E knockin AD mouse models in the presence or absence of TYROBP. (A) Representative western blots of hippocampal lysate. (B-D) Semi-quantitative results of expression levels of the following proteins: total Tau (Tau5), phosphorylated Tau (pTau), pSer202/Thr205 (AT8), p-Tau T181(pT181), p-Tau T231(pT231), p-Tau pSer396/pSer404 (PHF1). *P < 0.05, **P < 0.01, (n = 4). PHF-1: plant homeodomain finger protein 1: GAPDH: glycera dehyde-3-phosphate dehydrogenase."
Figure 4.
Activity of tau kinases in the hippocampus of AD mouse models in the presence or absence of TYROBP analyzed with Western blotting. (A) Representative western blots of hippocampal lysate. (B-D) The ratios of phosphorylated to total protein for CDK5, ERK and GSK3. *P < 0.05, **P < 0.01 (n = 4). CDK5: cyclin dependent kinase 5; p-CDK5: phosphorylated CDK5; ERK: extracellular regulated protein kinases; p-ERK: phosphorylated ERK; GSK3: glycogen synthase kinase 3; p-GSK3: phosphorylated GSK3."
Figure 5.
Number of microglia and astrocytes in the brains of AD mice at presence or absence of TYROBP detected using immunofluorescence and Western blotting. (A) Immunofluorescence analysis of hippocampal sections to detect IBA1-positive microglia and GFAP-positive astrocytes in hippocampus (scale bar, 200 μm). (B) Representative western blots of hippocampal lysates. (C-E) Semi-quantitative results of the target proteins. *P < 0.05, **P < 0.01 (n = 4). GFAP: glial fibrillary acidic protein."
[1] |
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016; 12(6):733-48. doi: 10.1016/j.jalz.2016.01.012.
doi: 10.1016/j.jalz.2016.01.012 pmid: 27016693 |
[2] |
Rosenberg RN, Lambracht-Washington D, Yu G, et al. Genomics of Alzheimer disease: a review. JAMA Neurol 2016; 73(7):867-74. doi: 10.1001/jamaneurol.2016.0301.
doi: 10.1001/jamaneurol.2016.0301 pmid: 27135718 |
[3] |
Besancon R, Lorenzi A, Cruts M, et al. Missense mutation in exon 11 (Codon 378) of the presenilin-1 gene in a French family with early-onset Alzheimer’s disease and transmission study by mismatch enhanced allele specific amplification. Mutations in brief no. 141. Online. besancon@rockefeller1.univ.lyon1.fr. Hum Mutat 1998; 11(6):481. doi: 10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q.
doi: 10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q |
[4] |
Finckh U, Kuschel C, Anagnostouli M, et al. Novel mutations and repeated findings of mutations in familial Alzheimer disease. Neurogenetics 2005; 6(2):85-9. doi: 10.1007/s10048-005-0211-x.
doi: 10.1007/s10048-005-0211-x pmid: 15776278 |
[5] |
Ikeuchi T, Kaneko H, Miyashita A, et al. Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations. Dement Geriatr Cogn Disord 2008; 26(1):43-9. doi: 10.1159/000141483.
doi: 10.1159/000141483 |
[6] |
Lv Z, Hu L, Yang Y, et al. Comparative study of microRNA profiling in one Chinese family with PSEN1 G378E mutation. Metab Brain Dis 2018; 33 (5):1711-20. doi: 10.1007/s11011-018-0279-2.
doi: 10.1007/s11011-018-0279-2 |
[7] |
Turnbull I R, Colonna M. Activating and inhibitory functions of DAP12. Nat Rev Immunol 2007; 7(2):155-61. doi: 10.1038/nri2014.
doi: 10.1038/nri2014 pmid: 17220916 |
[8] |
Dardiotis E, Siokas V, Pantazi E, et al. A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging 2017; 53:113-94. doi: 10.1016/j.neurobiolaging.2017.01.015.
doi: 10.1016/j.neurobiolaging.2017.01.015 |
[9] |
Zhang B, Gaiteri C, Bodea LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013; 153(3):707-20. doi: 10.1016/j.cell.2013.03.030.
doi: 10.1016/j.cell.2013.03.030 pmid: 23622250 |
[10] |
Pottier C, Ravenscroft TA, Brown PH, et al. TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 2016; 48:222-9. doi: 10.1016/j.neurobiolaging.2016.07.028.
doi: 10.1016/j.neurobiolaging.2016.07.028 |
[11] |
Zhong L, Zhang ZL, Li X, et al. TREM2/DAP 12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Front Aging Neurosci 2017; 9: 204. doi: 10.3389/fnagi.2017.00204.
doi: 10.3389/fnagi.2017.00204 |
[12] |
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352(6286):712-6. doi: 10.1126/science.aad8373.
doi: 10.1126/science.aad8373 pmid: 27033548 |
[13] |
Haure-Mirande JV, Audrain M, Fanutza T, et al. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol 2017; 134(5):769-88. doi: 10.1007/s00401-017-1737-3.
doi: 10.1007/s00401-017-1737-3 pmid: 28612290 |
[14] |
Ulland TK, Colonna M. TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 2018; 14(11):667-75. doi: 10.1038/s41582-018-0072-1.
doi: 10.1038/s41582-018-0072-1 pmid: 30266932 |
[15] |
Ulrich JD, Ulland TK, Colonna M, et al. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 2017; 94(2):237-48. doi: 10.1016/j.neuron.2017.02.042.
doi: S0896-6273(17)30150-2 pmid: 28426958 |
[16] |
Gratuze M, Leyns C, Holtzman DM. New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 66. doi: 10.1186/s13024-018-0298-9.
doi: 10.1186/s13024-018-0298-9 pmid: 30572908 |
[17] |
Jansen I E, Savage J E, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 2019; 51(3):404-13. doi: 10.1038/s41588-018-0311-9.
doi: 10.1038/s41588-018-0311-9 pmid: 30617256 |
[18] |
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol 2020; 98(1):28-41. doi: 10.1111/imcb.12301.
doi: 10.1111/imcb.12301 |
[19] |
De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell 2016; 164(4):603-15. doi: 10.1016/j.cell.2015.12.056.
doi: 10.1016/j.cell.2015.12.056 pmid: 26871627 |
[20] |
Yang SH. Cellular and molecular mediators of neuroinflammation in Alzheimer disease. Int Neurourol J 2019; 23(Suppl 2): S54-S62. doi: 10.5213/inj.1938184.092.
doi: 10.5213/inj.1938184.092 |
[21] |
Kovac A, Zilka N, Kazmerova Z, et al. Misfolded truncated protein tau induces innate immune response via MAPK pathway. J Immunol 2011; 187(5):2732-9. doi: 10.4049/jimmunol.1100216.
doi: 10.4049/jimmunol.1100216 |
[22] |
Gibbons GS, Lee V, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological Tau: a review. JAMA Neurol 2019; 76(1):101-8. doi: 10.1001/jamaneurol.2018.2505.
doi: 10.1001/jamaneurol.2018.2505 pmid: 30193298 |
[23] |
Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015; 18(11):1584-93. doi: 10.1038/nn.4132.
doi: 10.1038/nn.4132 pmid: 26436904 |
[24] |
Audrain M, Haure-Mirande JV, Wang M, et al. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Mol Psychiatry 2019; 24(9):1383-97. doi: 10.1038/s41380-018-0258-3.
doi: 10.1038/s41380-018-0258-3 |
[25] |
Sekiya M, Wang M, Fujisaki N, et al. Integrated biology approach reveals molecular and pathological interactions among Alzheimer’s Abeta42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 2018; 10(1): 26. doi: 10.1186/s13073-018-0530-9.
doi: 10.1186/s13073-018-0530-9 |
[1] | Jianbo Xiu, Lanlan Li, Qi Xu. Minocycline Activates the Nucleus of the Solitary Tract-Associated Network to Alleviate Lipopolysaccharide-Induced Neuroinflammation [J]. Chinese Medical Sciences Journal, 2022, 37(1): 1-14. |
[2] | Pan Yanfang, Jia Xiaotao, Song Erfei, Peng Xiaozhong. Astragaloside IV Protects Against Aβ1-42-induced Oxidative Stress, Neuroinflammation and Cognitive Impairment in Rats [J]. Chinese Medical Sciences Journal, 2018, 33(1): 29-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1