Chinese Medical Sciences Journal ›› 2022, Vol. 37 ›› Issue (2): 103-117.doi: 10.24920/004066
• Original Article • Previous Articles Next Articles
Xuewei Huang1, 5, Keqiong Deng2, 3, 4, Juanjuan Qin1, 5, Fang Lei5, 6, Xingyuan Zhang5, 6, Wenxin Wang1, 5, Lijin Lin1, 5, Yuming Zheng7, Dongai Yao8, Huiming Lu9, Feng Liu10, Lidong Chen11, Guilan Zhang12, Yueping Liu13, 14, Qiongyu Yang15, Jingjing Cai16, Zhigang She1, 5, *(), Hongliang Li1, 3, 5, *(
)
Received:
2022-01-22
Accepted:
2022-03-01
Published:
2022-06-30
Online:
2022-03-02
Contact:
Zhigang She,Hongliang Li
E-mail:zgshe@whu.edu.cn;lihl@whu.edu.cn
Xuewei Huang, Keqiong Deng, Juanjuan Qin, Fang Lei, Xingyuan Zhang, Wenxin Wang, Lijin Lin, Yuming Zheng, Dongai Yao, Huiming Lu, Feng Liu, Lidong Chen, Guilan Zhang, Yueping Liu, Qiongyu Yang, Jingjing Cai, Zhigang She, Hongliang Li. Association Between Lipid Profiles and Left Ventricular Hypertrophy: New Evidence from a Retrospective Study[J].Chinese Medical Sciences Journal, 2022, 37(2): 103-117.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Characteristics of the Beijing cross-sectional population [median (IQR)]"
Items | Overall | Normal LV wall thickness | LV wall thickening | Z or χ2 | P |
---|---|---|---|---|---|
n | 66,033 | 61,682 (93.40%) | 4,351 (6.60%) | ||
Age (yrs) | 49 (43, 54) | 48 (43, 54) | 52 (47, 59) | 27.46 | <0.001 |
Women [n (%)] | 23,118 (35.01) | 22,573 (36.60) | 545 (12.53) | 1,034.90 | <0.001 |
BMI (kg/m2) | 25.18 (22.97, 27.38) | 25.00 (22.83, 27.18) | 27.52 (25.61, 29.64) | 46.51 | <0.001 |
Obesity [n (%)] | 11,512 (19.74) | 9,811 (18.02) | 1,701 (44.19) | 1,554.67 | <0.001 |
Systolic blood pressure (mmHg) | 121 (109, 134) | 120 (108, 133) | 136 (125, 150) | 49.79 | <0.001 |
Hypertension [n (%)] | 13,839 (23.51) | 11,808 (21.48) | 2,031 (52.25) | 1,911.29 | <0.001 |
Total cholesterol (mmol/L) | 4.75 (4.17, 5.39) | 4.75 (4.17, 5.39) | 4.79 (4.16, 5.46) | 2.12 | 0.034 |
LDL-cholesterol (mmol/L) | 3.06 (2.53, 3.61) | 3.06 (2.53, 3.61) | 3.07 (2.50, 3.63) | -0.81 | 0.417 |
HDL-cholesterol (mmol/L) | 1.17 (0.97, 1.41) | 1.17 (0.98, 1.42) | 1.06 (0.89, 1.26) | -24.86 | <0.001 |
Non-HDL-cholesterol (mmol/L) | 3.54 (2.95, 4.17) | 3.53 (2.94, 4.16) | 3.70 (3.10, 4.33) | 11.08 | <0.001 |
Triglycerides (mmol/L) | 1.46 (1.01, 2.19) | 1.44 (0.99, 2.16) | 1.79 (1.27, 2.73) | 24.92 | <0.001 |
Total cholesterol/HDL-c ratio | 4.05 (3.27, 4.97) | 4.02 (3.24, 4.93) | 4.50 (3.72, 5.40) | 23.44 | <0.001 |
Triglycerides/HDL-c ratio | 1.26 (0.76, 2.13) | 1.23 (0.74, 2.08) | 1.71 (1.06, 2.82) | 27.97 | <0.001 |
Apolipoprotein B (g/L) | 0.91 (0.77, 1.07) | 0.91 (0.76, 1.06) | 0.94 (0.80, 1.10) | 9.64 | <0.001 |
Apolipoprotein A-I (g/L) | 1.31 (1.16, 1.48) | 1.32 (1.16, 1.49) | 1.27 (1.13, 1.43) | -11.01 | <0.001 |
ApoB/ApoA-I ratio | 0.70 (0.56, 0.85) | 0.69 (0.56, 0.84) | 0.74 (0.61, 0.88) | 14.30 | <0.001 |
Lipoprotein(a) (mg/L) | 119.00 (45.60, 261.00) | 119.00 (45.30, 262.00) | 119.00 (50.00, 254.00) | -0.51 | 0.610 |
Uric acid (μmol/L) | 337.00 (274.00, 399.00) | 333.00 (271.00, 396.10) | 376.00 (321.00, 436.00) | 30.42 | <0.001 |
Hemoglobin A1c (%) | 5.60 (5.30, 5.90) | 5.50 (5.30, 5.90) | 5.80 (5.50, 6.40) | 29.43 | <0.001 |
Fasting blood-glucose (mmol/L) | 5.30 (4.92, 5.86) | 5.28 (4.90, 5.81) | 5.77 (5.24, 6.75) | 36.27 | <0.001 |
Diabetes mellitus [n (%)] | 10,284 (15.60) | 8,906 (14.46) | 1,378 (31.69) | 915.73 | <0.001 |
C-reactive protein (mg/L) | 1.20 (0.70, 2.10) | 1.20 (0.70, 2.00) | 1.60 (0.90, 2.80) | 19.08 | <0.001 |
Hemoglobin (g/L) | 147.00 (134.00, 157.00) | 146.00 (134.00, 157.00) | 152.00 (143.00, 160.00) | 22.72 | <0.001 |
Red blood cell (×1012/L) | 4.77 (4.43, 5.09) | 4.76 (4.42, 5.09) | 4.92 (4.61, 5.19) | 19.80 | <0.001 |
White blood cell (×109/L) | 5.87 (4.98, 6.92) | 5.85 (4.96, 6.90) | 6.15 (5.25, 7.20) | 12.15 | <0.001 |
Alanine transaminase (IU/L) | 19.95 (14.10, 29.50) | 19.70 (13.90, 29.10) | 23.95 (17.10, 34.80) | 21.77 | <0.001 |
Aspartate transaminase (IU/L) | 18.40 (15.40, 22.70) | 18.40 (15.40, 22.60) | 19.40 (16.10, 24.90) | 13.07 | <0.001 |
GGT (IU/L) | 28.00 (17.00, 49.00) | 27.00 (16.30, 48.00) | 39.00 (25.00, 69.00) | 31.22 | <0.001 |
Serum creatinine (μmol/L) | 67.00 (57.00, 77.00) | 67.00 (57.00, 77.00) | 71.00 (63.00, 80.00) | 20.65 | <0.001 |
eGFR [ml/(min·1.73m2)] | 105.72 (95.24, 112.34) | 105.90 (95.81, 112.48) | 102.89 (81.83, 110.31) | -16.40 | <0.001 |
Albumin (g/L) | 45.00 (42.60, 47.30) | 45.00 (42.60, 47.30) | 45.20 (42.70, 47.20) | 1.30 | 0.194 |
Blood urea nitrogen (mmol/L) | 5.00 (4.30, 5.90) | 5.00 (4.30, 5.90) | 5.30 (4.50, 6.20) | 16.41 | <0.001 |
Platelet count (×109/L) | 220.00 (187.00, 256.00) | 220.00 (187.00, 257.00) | 209.00 (177.00, 244.00) | -13.53 | <0.001 |
C-peptide (ng/ml) | 2.42 (1.88, 3.09) | 2.38 (1.85, 3.04) | 3.00 (2.39, 3.73) | 38.11 | <0.001 |
Fasting insulin (mU/L) | 9.22 (6.38, 13.36) | 9.07 (6.28, 13.08) | 11.87 (8.29, 17.14) | 29.86 | <0.001 |
HOMA-IR | 2.28 (1.48, 3.54) | 2.27 (1.47, 3.50) | 2.50 (1.63, 3.98) | 10.17 | <0.001 |
Figure 2.
Relationship between lipid profiles and cardiac hypertrophy in cross-sectional analysis. OR: odds ratio. The adjustment factors of logistic model include age, sex, BMI, systolic blood pressure, C-reactive protein, red blood cell count, alanine transaminase, blood urea nitrogen, ln(HOMA-IR), and the interaction between ln(HOMA-IR) and lipids."
Figure 3.
Relationship between lipid profiles and cardiac hypertrophy in cohort analysis. HR: hazard ratio. The adjustment factors of the Cox model include age, sex, BMI, systolic blood pressure, red blood cell count, alanine transaminase, blood urea nitrogen, ln(HOMA-IR), and the interaction between ln(HOMA-IR) and lipids."
Table 2.
The final model determined by the forward stepwise selection (likelihood ratio) when different lipids were put into the Cox model together"
Variables | HR (95%CI)a | P value |
---|---|---|
Age (yrs) | 1.032 (1.017,1.046) | <0.001 |
Sex (female/male) | 0.352 (0.239,0.519) | <0.001 |
BMI (kg/m2) | 1.124 (1.086,1.164) | <0.001 |
Systolic blood pressure (mm Hg) | 1.026 (1.020,1.033) | <0.001 |
Blood urea nitrogen (mmol/L) | 1.099 (1.007,1.200) | 0.034 |
Triglycerides | ||
First tertile (≤1.18 mmol/L) | Reference | |
Second tertile (1.18-1.92 mmol/L) | 1.827 (1.277,2.614) | 0.001 |
Third tertile (≥1.92 mmol/L) | 1.904 (1.336,2.714) | <0.001 |
1. |
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7):387-407. doi: 10.1038/s41569-018-0007-y.
doi: 10.1038/s41569-018-0007-y |
2. |
Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level-risk factors, screening, and outcomes. Nat Rev Cardiol 2011; 8(12):673-85. doi: 10.1038/nrcardio.2011.154.
doi: 10.1038/nrcardio.2011.154 pmid: 22027657 |
3. |
Bluemke DA, Kronmal RA, Lima JAC, et al. The Relationship of Left Ventricular Mass and Geometry to Incident Cardiovascular Events. The MESA (Multi-Ethnic Study of Atherosclerosis) Study. J Am Coll Cardiol 2008; 52(25):2148-55. doi: 10.1016/j.jacc.2008.09.014.
doi: 10.1016/j.jacc.2008.09.014 pmid: 19095132 |
4. |
Wang W, Hu M, Liu H, et al. Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metab 2021; 33(10):1943-56.e2. doi: 10.1016/j.cmet.2021.08.005.
doi: 10.1016/j.cmet.2021.08.005 |
5. |
Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res 2016; 118(11):1736-51. doi: 10.1161/CIRCRESAHA.116.306842.
doi: 10.1161/CIRCRESAHA.116.306842 |
6. |
Pietri P, Georgiopoulos G, Tsiachris D, et al. Triglycerides are related to left ventricular mass in hypertensive patients independently of other cardiometabolic risk factors: the effect of gender. Sci Rep 2020; 10(1):1-7. doi: 10.1038/s41598-020-70237-1.
doi: 10.1038/s41598-020-70237-1 |
7. |
Horio T, Miyazato J, Kamide K, et al. Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension. Am J Hypertens 2003; 16(11 I):938-44. doi: 10.1016/S0895-7061(03)01015-X.
doi: 10.1016/S0895-7061(03)01015-X |
8. |
Schillaci G, Vaudo G, Reboldi G, et al. Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension. J Hypertens 2001; 19(12):2265-70. doi: 10.1097/00004872-200112000-00021.
doi: 10.1097/00004872-200112000-00021 pmid: 11725172 |
9. |
Jullien V, Gosse P, Ansoborlo P, et al. Relationship between left ventricular mass and serum cholesterol level in the untreated hypertensive. J Hypertens 1998; 16(7):1043-7. doi: 10.1097/00004872-199816070-00019.
doi: 10.1097/00004872-199816070-00019 pmid: 9794746 |
10. |
Aung N, Sanghvi MM, Piechnik SK, et al. The effect of blood lipids on the left ventricle: a mendelian randomization study. J Am Coll Cardiol 2020; 76(21):2477-88. doi: 10.1016/j.jacc.2020.09.583.
doi: 10.1016/j.jacc.2020.09.583 pmid: 33213727 |
11. |
Mehta A, Shapiro MD. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol 2021; 19(3):168-79. doi: 10.1038/s41569-021-00613-5.
doi: 10.1038/s41569-021-00613-5 |
12. |
Wang H, Li Z, Guo X, et al. The impact of nontraditional lipid profiles on left ventricular geometric abnormalities in general Chinese population. BMC Cardiovasc Disord 2018; 18(1):1-11. doi: 10.1186/s12872-018-0829-x.
doi: 10.1186/s12872-018-0829-x |
13. |
Di Bonito P, Moio N, Scilla C, et al. Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children. Diabetes Care 2012; 35(1):158-62. doi: 10.2337/dc11-1456.
doi: 10.2337/dc11-1456 |
14. |
Taddei C, Zhou B, Bixby H, et al. Repositioning of the global epicentre of non-optimal cholesterol. Nature 2020; 582(7810):73-7. doi: 10.1038/s41586-020-2338-1.
doi: 10.1038/s41586-020-2338-1 |
15. |
Zhao D, Liu J, Wang M, et al. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 2019; 16(4):203-12. doi: 10.1038/s41569-018-0119-4.
doi: 10.1038/s41569-018-0119-4 |
16. |
Zhao D. Epidemiological features of cardiovascular disease in Asia. JACC Asia 2021; 1(1):1-13. doi: 10.1016/j.jacasi.2021.04.007.
doi: 10.1016/j.jacasi.2021.04.007 |
17. |
Kario K, Chia Y, Sukonthasarn A, et al. Diversity of and initiatives for hypertension management in Asia—Why we need the HOPE Asia Network. J Clin Hypertens 2020; 22(3):331-43. doi: 10.1111/jch.13733.
doi: 10.1111/jch.13733 |
18. |
Kou S, Caballero L, Dulgheru R, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Hear J Cardiovasc Imaging 2014; 15(6):680-90. doi: 10.1093/ehjci/jet284.
doi: 10.1093/ehjci/jet284 |
19. |
Sun NL, Jaw-Wen C, Wang JG, et al. Expert consensus on diagnosis and treatment of hypertension complicated with left ventricular hypertrophy in Asian. Chin J Hypertens 2016; 24(7):619-27. doi: 10.16439/j.cnki.1673-7245.2016.07.008.
doi: 10.16439/j.cnki.1673-7245.2016.07.008 |
20. |
Joint Committee Issued Chinese Guideline for the Management of Dyslipidemia in Adults. 2016 Chinese Guideline for the Management of Dyslipidemia in Adults. Zhonghua Xin Xue Guan Bing Za Zhi 2016; 44(10):833-53. doi: 10.3760/cma.j.issn.0253-3758.2016.10.005.
doi: 10.3760/cma.j.issn.0253-3758.2016.10.005 |
21. |
Wu Y. Overweight and obesity in China. BMJ 2006; 333(7564):362-3. doi: 10.1136/bmj.333.7564.362.
doi: 10.1136/bmj.333.7564.362 |
22. |
Joint Committee for Guideline Revision. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension—A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J Geriatr Cardiol 2019; 16(3):182-241. doi: 10.11909/j.issn.1671-5411.2019.03.014.
doi: 10.11909/j.issn.1671-5411.2019.03.014 |
23. |
Chinese Elderly Type 2 Diabetes Prevention and Treatment of Clinical Guidelines Writing Group, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Society, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Health Care Society, Geriatric Professional Committee of Beijing Medical Award Foundation, National Clinical Medical Research Center for Geriatric Diseases (PLA General Hospital). Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition). Zhonghua Nei Ke Za Zhi 2022; 61(1):12-50. Chinese. doi: 10.3760/cma.j.cn112138-20211027-00751.
doi: 10.3760/cma.j.cn112138-20211027-00751 |
24. |
Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7):412-9. doi: 10.1007/BF00280883.
doi: 10.1007/BF00280883 pmid: 3899825 |
25. |
Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020; 31(6):1068-77. e3. doi: 10.1016/j.cmet.2020.04.021.
doi: 10.1016/j.cmet.2020.04.021 |
26. |
Waljee AK, Mukherjee A, Singal AG, et al. Comparison of imputation methods for missing laboratory data in medicine. BMJ Open 2013; 3(8):e002847. doi: 10.1136/bmjopen-2013-002847.
doi: 10.1136/bmjopen-2013-002847 |
27. |
Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87(2):507-20. doi: 10.1152/physrev.00024.2006.
doi: 10.1152/physrev.00024.2006 pmid: 17429039 |
28. |
Ng ACT, Delgado V, Borlaug BA, et al. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 2021; 18(4):291-304. doi: 10.1038/s41569-020-00465-5.
doi: 10.1038/s41569-020-00465-5 |
29. |
Pirillo A, Casula M, Olmastroni E, et al. Global epidemiology of dyslipidaemias. Nat Rev Cardiol 2021; 18(10):689-700. doi: 10.1038/s41569-021-00541-4.
doi: 10.1038/s41569-021-00541-4 pmid: 33833450 |
30. |
Shang R, Rodrigues B. Lipoprotein lipase and its delivery of fatty acids to the heart. Biomolecules 2021; 11(7):1-11. doi: 10.3390/biom11071016.
doi: 10.3390/biom11071016 |
31. |
Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18(11):671-84. doi: 10.1038/nrm.2017.76.
doi: 10.1038/nrm.2017.76 |
32. |
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3):1093-129. doi: 10.1152/physrev.00006.2004.
doi: 10.1152/physrev.00006.2004 |
33. |
Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab 2012; 15(6):805-12. doi: 10.1016/j.cmet.2012.04.006.
doi: 10.1016/j.cmet.2012.04.006 pmid: 22682221 |
34. |
Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol 2018; 15(8):457-70. doi: 10.1038/s41569-018-0044-6.
doi: 10.1038/s41569-018-0044-6 |
35. |
Szczepaniak LS, Victor RG, Orci L, et al. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 2007; 101(8):759-67. doi: 10.1161/CIRCRESAHA.107.160457.
doi: 10.1161/CIRCRESAHA.107.160457 pmid: 17932333 |
36. |
Liu L, Shi X, Bharadwaj KG, et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem 2009; 284(52):36312-23. doi: 10.1074/jbc.M109.049817.
doi: 10.1074/jbc.M109.049817 pmid: 19778901 |
37. |
Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci 2003; 100(6):3077-82. doi: 10.1073/pnas.0630588100.
doi: 10.1073/pnas.0630588100 |
38. |
Lu Y, Zhang H, Lu J, et al. Prevalence of dyslipidemia and availability of lipid-lowering medications among primary health care settings in China. JAMA Netw Open 2021; 4(9):e2127573. doi: 10.1001/jamanetworkopen.2021.27573.
doi: 10.1001/jamanetworkopen.2021.27573 |
39. |
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592(7855):524-33. doi: 10.1038/s41586-021-03392-8.
doi: 10.1038/s41586-021-03392-8 |
40. |
Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol 2021; 77(24):3031-41. doi: 10.1016/j.jacc.2021.04.059.
doi: 10.1016/j.jacc.2021.04.059 pmid: 34140107 |
41. |
Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380(1):11-22. doi: 10.1056/nejmoa1812792.
doi: 10.1056/nejmoa1812792 |
42. |
Heydari B, Abdullah S, Pottala JV, et al. Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction. Circulation 2016; 134(5):378-91. doi: 10.1161/CIRCULATIONAHA.115.019949.
doi: 10.1161/CIRCULATIONAHA.115.019949 pmid: 27482002 |
43. |
Djoussé L, Cook NR, Kim E, et al. Supplementation with vitamin D and omega-3 fatty acids and incidence of heart failure hospitalization: vital-heart failure. Circulation 2020; 141(9):784-6. doi: 10.1161/CIRCULATIONAHA.119.044645.
doi: 10.1161/CIRCULATIONAHA.119.044645 |
44. |
Campos-Staffico AM, Costa APR, Carvalho LSF, et al. Omega-3 intake is associated with attenuated inflammatory response and cardiac remodeling after myocardial infarction. Nutr J 2019; 18(1):1-8. doi: 10.1186/s12937-019-0455-1.
doi: 10.1186/s12937-019-0455-1 |
45. |
Block RC, Liu L, Herrington DM, et al. Predicting risk for incident heart failure with omega-3 fatty acids: from MESA. JACC Hear Fail 2019; 7(8):651-61. doi: 10.1016/j.jchf.2019.03.008.
doi: 10.1016/j.jchf.2019.03.008 |
46. |
Zou J, Le K, Xu S, et al. Fenofibrate ameliorates cardiac hypertrophy by activation of peroxisome proliferator-activated receptor-α partly via preventing p65-NFκB binding to NFATc4. Mol Cell Endocrinol 2013; 370(1-2):103-12. doi: 10.1016/j.mce.2013.03.006.
doi: 10.1016/j.mce.2013.03.006 |
47. |
Zhuang L, Mao Y, Liu Z, et al. FABP3 deficiency exacerbates metabolic derangement in cardiac hypertrophy and heart failure via PPARα pathway. Front Cardiovasc Med 2021; 8: 722908. doi: 10.3389/fcvm.2021.722908.
doi: 10.3389/fcvm.2021.722908 |
48. |
Pownall HJ, Rosales C, Gillard BK, et al. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol 2021; 18(10):712-23. doi: 10.1038/s41569-021-00538-z.
doi: 10.1038/s41569-021-00538-z pmid: 33833449 |
49. |
Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001; 104(3):317-24. doi: 10.1161/hc2801.094031.
doi: 10.1161/hc2801.094031 pmid: 11457751 |
50. |
Chang SA, Kim YJ, Lee HW, et al. Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy. Hypertension 2009; 54(3):591-7. doi: 10.1161/HYPERTENSIONAHA.109.131243.
doi: 10.1161/HYPERTENSIONAHA.109.131243 |
51. |
Kawel-Boehm N, Kronmal R, Eng J, et al. Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA). Radiology 2019; 293(1):107-14. doi: 10.1148/radiol.2019182871.
doi: 10.1148/radiol.2019182871 |
52. |
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36):3599-726. doi: 10.1093/eurheartj/ehab368.
doi: 10.1093/eurheartj/ehab368 |
[1] | Bin Wu,Jianghua Zhou,Wenxin Wang,Huilin Yang,Meng Xia,Binghong Zhang,Zhigang She,Hongliang Li. Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients [J]. Chinese Medical Sciences Journal, 2021, 36(1): 17-26. |
[2] | Yin Ying, Li Rui, Li Xiaoli, Wu Kunrong, Li Ling, Xu Yuedong, Liao Lin, Yang Rui, Li Yan. Association Between Homocysteine Level and Methylenetetrahydrofolate Reductase Gene Polymorphisms in Type 2 Diabetes Accompanied by Dyslipidemia [J]. Chinese Medical Sciences Journal, 2020, 35(1): 85-91. |
[3] | Zhang Yang, Zhang Shunhua, Bian Ailing, Chen Youxin. Bilateral Choroidal Occlusion in Antiphospholipid Syndrome Associated with Systemic Lupus Erythematosus [J]. Chinese Medical Sciences Journal, 2017, 32(4): 269-273. |
[4] | Ying Fan, Shan-xiao Zhang, Meng Ren, Li-feng Hong, Xiao-ni Yan. Impact of 1, 25-(OH)2D3 on Left Ventricular Hypertrophy in Type 2 Diabetic Rats [J]. Chinese Medical Sciences Journal, 2015, 30(2): 114-120. |
[5] | Chan Wu, Fang-tian Dong, You-xin Chen, Qian Wang, Rong-ping Dai, Hua Zhang. Systemic Lupus Erythematosus and Antiphospholipid Syndrome Related Retinal Vasculitis Mimicking Ocular Cysticercosis: a Case Report [J]. Chinese Medical Sciences Journal, 2015, 30(1): 59-62. |
[6] | Liu-luan Zhu, Ying Cui, Yong-sheng Chang and Fu-de Fang. A Second Protein Marker of Caveolae: Caveolin-2 [J]. Chinese Medical Sciences Journal, 2010, 25(2): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1