Chinese Medical Sciences Journal ›› 2023, Vol. 38 ›› Issue (2): 97-108.doi: 10.24920/004188
• Original Article • Previous Articles Next Articles
Bei Wu1, Wan-Qing Song1, Jin-Qian Dong2, Hong-Li Yue1, Yu Lu1, Yun Yu1, Shu-Yu Hao2, Bai-Yun Liu2, Wei-Hua Cui1, *()
Received:
2022-11-03
Accepted:
2023-01-19
Published:
2023-06-30
Online:
2023-02-06
Contact:
*Bei Wu, Wan-Qing Song, Jin-Qian Dong, Hong-Li Yue, Yu Lu, Yun Yu, Shu-Yu Hao, Bai-Yun Liu, Wei-Hua Cui. Effects of Sevoflurane and Propofol on Neurological Recovery of Traumatic Brain Injury Patients in the Early Postoperative Stage: A Retrospective Cohort Study[J].Chinese Medical Sciences Journal, 2023, 38(2): 97-108.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
Demographics and perioperative data of TBI patients in the craniotomy and decompressive craniectomy subgroups"
Items | Craniotomy (n=110) | Decompressive craniectomy (n=134) | Statistics | P value |
---|---|---|---|---|
Age (yrs, mean ± SD) | 46.99 ± 16.73 | 47.78 ± 15.48 | t = -0.38 | 0.704 |
Sex [n (%)] | χ2 = 0.24 | 0.625 | ||
Male | 85 (77.27) | 107 (79.85) | ||
Female | 25 (22.73) | 27 (20.15) | ||
GCS on admission (score, mean ± SD) | 11.46 ± 3.60 | 6.52 ± 3.54 | t = 10.76 | <0.001 |
Pupil reactivity on admission [n (%)] | χ2 = 71.76 | <0.001 | ||
Both reactive | 90 (83.33) | 55 (41.67) | ||
One reactive | 18 (16.67) | 15 (11.36) | ||
None reactive | 0 | 62 (46.97) | ||
Diagnosis [n (%)] | χ2 = 61.43 | <0.001 | ||
EDH | 65 (59.09) | 27 (20.30) | ||
SDH | 6 (5.45) | 42 (31.58) | ||
Cerebral contusion | 28 (25.45) | 51 (38.35) | ||
Diffuse cerebral swelling | 1 (0.91) | 11 (8.27) | ||
Skull fracture | 10 (9.09) | 2 (1.50) | ||
Hemoglobin on admission(g·L-1) | 135.34 (20.61) | 137.58 (20.55) | t = -0.85 | 0.397 |
CT findings on admission [n (%)] | χ2 = 36.74 | <0.001 | ||
Normal basal cistern | 54 (49.54) | 18 (13.64) | ||
Abnormal basal cistern | 55 (50.46) | 114 (86.36) | ||
Midline shift# (mm) | 3.11 [0.00-5.61(0.00-22.59)] | 6.24 [4.19-11.75(0.00-23.44)] | t = -6.08 | <0.001 |
Systolic blood pressure (mmHg, mean ± SD) | 134.77 ± 18.78 | 140.11 ± 27.56 | t = -1.70 | 0.090 |
Diastolic blood pressure (mmHg, mean ± SD) | 79.62 ± 10.42 | 78.99 ± 15.55 | t = 0.35 | 0.723 |
Anesthesia maintenance [n (%)] | χ2 = 11.02 | <0.001 | ||
Propofol | 75 (68.18) | 63 (47.01) | ||
Sevoflurane | 35 (31.82) | 71 (52.99) | ||
Operation duration# (h) | 3.00 [2.50-4.00 (1.00-8.00)] | 3.50 [2.50-4.00 (1.00-8.50)] | t = 0.87 | 0.864 |
Intraoperative fluid# | ||||
Mannitol (ml·kg-1) | 0.00 [0.00-0.00[0.00-5.68)] | 0.00 [0.00-0.00(0.00-6.67)]) | t = -2.16 | 0.032 |
Crystalloid (ml·kg-1) | 25.00 [17.46-33.67(5.26-61.54)] | 31.25 [23.08-40.00(7.14-102.35)] | t = -3.93 | <0.001 |
Colloid (ml·kg-1) | 8.33 [6.85-12.50(0.00-26.67)] | 11.76 [7.69-14.93(0.00-31.25)] | t = -3.90 | <0.001 |
Autologous blood (ml·kg-1) | 0.00 [0.00-0.00(0.00-33.16)] | 3.12 [0.00-7.62(0.00-30.77)] | t = -4.01 | <0.001 |
PRBC (ml·kg-1) | 0.00 [0.00-0.00(0.00-7.43)] | 0.00 [0.00-3.25(0.00-18.35)] | t = -3.03 | 0.004 |
Plasma (ml·kg-1) | 0.00 [0.00-0.00(0.00-10.81)] | 0.00 [0.00-5.73(0.00-23.33)] | t = -4.57 | <0.001 |
Blood loss# (ml·kg-1) | 4.62 [2.50-8.62(0.00-68.42)] | 9.16 [4.56-19.80(0.81-69.23)] | t = -3.65 | <0.001 |
Urine volume# (ml·kg-1) | 10.00 [6.12-15.04(0.00-36.00)] | 11.76 [7.14-17.97(2.00-101.18)] | t = -2.51 | 0.058 |
Vasoactive drugs# | ||||
Atropine (mg) | 0.00 [0.00-0.00(0.00-1.50)]) | 0.00 [0.00-0.00(0.00-3.00)] | t = -0.06 | 0.951 |
Dopamine (mg) | 0.00 [0.00-0.00(0.00-51.70) )] | 0.00 [0.00-0.00(0.00-139.00)] | t = -2.07 | 0.057 |
Esmolol (mg) | 0.00 [0.00-0.00(0.00-100.00)] | 0.00 [0.00-0.00(0.00-400.00)] | t = -0.96 | 0.377 |
Epinephrine (mg) | 0.00 [0.00-0.00(0.00-0.00)] | 0.00 [0.00-0.00(0.00-17.00)] | t = -1.30 | 0.195 |
Norepinephrine (mg) | 0.00 [0.00-0.00(0.00-18.00)] | 0.00 [0.00-0.24(0.00-13.00)] | t = 0.79 | 0.385 |
Phenylephrine (mg) | 0.00 [0.00-0.00(0.00-28.00)] | 0.00 [0.00-0.00(0.00-48.00)] | t = -1.02 | 0.324 |
Length of hospitalization# (d) | 13.00 [9.00-17.00[1.00-124.00)] | 14.50 [6.00-22.75[0.00-69.00)] | t = -0.36 | 0.719 |
GCS on postoperative day 1[score, mean ± SD] | 11.34 ± 3.98 | 6.40 ± 3.96 | t = 9.35 | <0.001 |
GCS on postoperative day 3[score, mean ± SD] | 11.40 ± 4.19 | 7.52 ± 4.25 | t = 6.47 | <0.001 |
GCS on postoperative day 7[score, mean ± SD] | 12.39 ± 3.90 | 7.92 ± 4.44 | t = 7.35 | <0.001 |
GOS at discharge [n (%)] | t = 54.74 | <0.001 | ||
Unfavorable | 30 (27.52) | 100 (75.19) | ||
Favorable | 79 (72.48) | 33 (24.81) |
Table 2.
Demographic characteristics and perioperative data under different anesthesia in the craniotomy and decompressive craniectomy subgroups"
Items | Craniotomy | Decompressive craniectomy | |||||||
---|---|---|---|---|---|---|---|---|---|
Propofol (n=75) | Sevoflurane (n=35) | Statistics | P value | Propofol (n=63) | Sevoflurane (n=71) | Statistics | P value | ||
Age (yrs, mean ± SD) | 46.36 ± 15.50 | 48.34 ± 19.28 | t = -0.58 | 0.565 | 47.21 ± 16.84 | 48.28 ± 14.27 | t = -0.40 | 0.690 | |
Sex [n (%)] | χ2 = 0.91 | 0.340 | χ2 =0.02 | 0.895 | |||||
Male | 56 (74.67) | 29 (82.86) | 50 (79.37) | 57 (80.28) | |||||
Female | 19 (25.33) | 6 (17.14) | 13 (20.63) | 14 (19.72) | |||||
GCS on admission (score, mean ± SD) | 11.31 ± 3.88 | 11.80 ± 2.94 | t = -0.67 | 0.506 | 6.76 ± 3.28 | 6.31 ± 3.77 | t = 0.74 | 0.463 | |
Pupil reactivity on admission [n (%)] | χ2 = 2.27 | 0.118 | χ2 = 2.12 | 0.347 | |||||
Both reactive | 58 (79.45) | 32 (91.43) | 29 (47.54) | 26 (36.62) | |||||
One reactive | 15 (20.55) | 3 (8.57) | 5 (8.20) | 10 (14.08) | |||||
None reactive | 0 (0.00) | 0 (0.00) | 27 (44.26) | 35 (49.30) | |||||
Diagnosis [n (%)] | χ2 = 3.35 | 0.501 | χ2 = 3.47 | 0.483 | |||||
EDH | 45 (60.00) | 20 (57.14) | 14 (22.22) | 13 (18.57) | |||||
SDH | 5 (6.67) | 1 (2.86) | 17 (26.98) | 25 (35.71) | |||||
Cerebral contusion [n (%)] | 16 (21.33) | 12 (34.29) | 24 (38.10) | 27 (38.57) | |||||
Diffuse cerebral swelling [n (%)] | 1 (1.33) | 0 | 6 (9.52) | 5 (7.14) | |||||
Skull fracture [n (%)] | 8 (10.67) | 2 (5.71) | 2 (3.17) | 0 | |||||
Hemoglobin on admission (g·L-1, mean ± SD) | 134.87 ± 20.62 | 136.34 ± 20.86 | t = -0.35 | 0.728 | 138.05 ± 22.44 | 137.17 ± 18.87 | t = 0.25 | 0.806 | |
CT findings on admission [n (%)] | χ2 = 0.02 | 0.889 | χ2 = 0.08 | 0.782 | |||||
Normal basal cistern | 37 (50.00) | 17 (48.57) | 9 (14.52) | 9 (12.86) | |||||
Abnormal basal cistern | 37 (50.00) | 18 (51.43) | 53 (85.48) | 61 (87.14) | |||||
Midline shift# (mm) | 3.58 [0.00-5.78 (0.00-22.59)] | 2.73 [0.85-4.57 (0.00-12.98)] | t = 1.14 | 0.307 | 6.24 [4.25-11.09 (0.00-21.39)] | 6.24 [4.14-12.36 (0.00-23.44)] | t = -0.42 | 0.674 | |
Systolic blood pressure (mmHg, mean ± SD) | 133.93 ± 15.17 | 136.53 ± 24.88 | t = -0.66 | 0.510 | 135.16 ± 25.18 | 144.51 ± 28.97 | t = -1.98 | 0.053 | |
Diastolic blood pressure (mmHg, mean ± SD) | 79.89 ± 10.02 | 79.06 ± 11.37 | t = 0.38 | 0.705 | 77.40 ± 13.42 | 80.41 ± 17.20 | t = -1.12 | 0.265 | |
Operation duration# (h) | 3.00 [2.25-3.50 (1.00-4.50)] | 3.50 [2.85-4.00 (1.00-8.00)] | t = 0.11 | 0.937 | 3.50 [2.50-4.22 (1.00-8.50)] | 3.00 [2.50-4.00 (1.50-3.50)] | t = -0.97 | 0.360 | |
Intraoperative fluids | |||||||||
Mannitol# (ml·kg-1) | 0.00 [0.00-0.00 (0.00-5.68)] | 0.00 [0.00-0.00 (0.00-3.68)] | t = -0.63 | 0.524 | 0.00 [0.00-0.00 (0.00-6.67)] | 0.00 [0.00-0.00 (0.00-5.56)] | t = -0.07 | 0.941 | |
Crystalloid# (ml·kg-1) | 25.00 [16.67-33.33(5.75-50.00)] | 28.57 [21.43-36.04 (5.26-61.54)] | t = -1.74 | 0.070 | 33.33 [23.95-42.00 (8.06-102.35)] | 29.41 [22.62-36.04 (7.14-60.34)] | t = 1.83 | 0.065 | |
Colloid# (ml·kg-1) | 8.33 [6.41-12.66 (0.00-26.67)] | 8.33 [7.14-11.81 (0.00-21.05)] | t = -0.38 | 0.730 | 11.76 [7.69-15.24 (5.00-31.25)] | 11.90 [7.30-14.29 (0.00-27.27)] | t = 0.10 | 0.924 | |
Autologous blood# (ml·kg-1) | 0.00 [0.00-0.00 (0.00-23.33)] | 0.00 [0.00-3.62 (0.00-33.16)] | t = -1.23 | 0.153 | 0.00 [0.00-7.92 (0.00-30.77)] | 3.79 [0.00-7.41 (0.00-20.00)] | t = -0.42 | 0.673 | |
PRBC# (ml·kg-1) | 0.00 [0.00-0.00 (0.00-7.43)] | 0.00 [0.00-0.00 (0.00-5.47)] | t = -0.03 | 0.977 | 0.00 [0.00-0.00 (0.00-18.35)] | 0.00 [0.00-3.25 (0.00-9.45)] | t = 0.96 | 0.327 | |
Plasma# (ml·kg-1) | 0.00 [0.00-0.00 (0.00-10.81)] | 0.00 [0.00-0.00 (0.00-8.42)] | t = -0.58 | 0.535 | 0.00 [0.00-6.13 (0.00-18.82)] | 0.00 [0.00-5.62 (0.00-23.33)] | t = 0.47 | 0.639 | |
Blood loss# (ml·kg-1) | 4.00 [2.35-8.33 (0.00-60.00)] | 5.45 [4.00-8.79 (0.61-68.42)] | t = -0.82 | 0.371 | 7.27 [4.00-18.75 (0.81-69.23)] | 10.91 [5.88-20.00 (1.25-53.85)] | t = -0.38 | 0.703 | |
Urine volume# (ml·kg-1) | 9.20 [5.71-13.16 (0.00-30.00)] | 12.24 [6.82-15.87 (3.16-36.00)] | t = -1.39 | 0.157 | 12.31 [8.00-20.00(3.08-101.18)] | 10.67 [6.25-15.38 (2.00-45.45)] | t = 2.01 | 0.056 | |
Intraoperative vasoactive drugs | |||||||||
Atropine# (mg) | 0.00 [0.00-0.00 (0.00-1.50)] | 0.00 [0.00-0.00 (0.00-0.00)] | t = 1.72 | 0.247 | 0.00 [0.00-0.00 (0.00-3.00)] | 0.00 [0.00-0.00 (0.00-1.00)] | t = 0.54 | 0.572 | |
Dopamine# (mg) | 0.00 [0.00-0.00 (0.00-39.60)] | 0.00 [0.00-0.00 (0.00-51.70)] | t = -0.50 | 0.547 | 0.00 [0.00-0.00 (0.00-122.00)] | 0.00 [0.00-0.00 (0.00-139.00)] | t = -0.18 | 0.855 | |
Esmolol# (mg) | 0.00 [0.00-0.00 (0.00-100.00)] | 0.00 [0.00-0.00 (0.00-60.00)] | t = -0.21 | 0.847 | 0.00 [0.00-0.00 (0.00-230.00)] | 0.00 [0.00-0.00 (0.00-400.00)] | t = -0.52 | 0.614 | |
Epinephrine# (mg) | 0.00 [0.00-0.00 (0.00-0.00)] | 0.00 [0.00-0.00 (0.00-0.00)] | - | - | 0.00 [0.00-0.00 (0.00-17.00)] | 0.00 [0.00-0.00 (0.00-5.79)] | t = 0.65 | 0.495 | |
Norepinephrine# (mg) | 0.00 [0.00-0.00 (0.00-18.00)] | 0.00 [0.00-0.00 (0.00-3.42)] | t = 1.00 | 0.497 | 0.00 [0.00-0.00 (0.00-13.00)] | 0.00 [(0.00-0.50 (0.00-2.77)] | t = 0.70 | 0.460 | |
Phenylephrine# (mg) | 0.00 [0.00-0.00 (0.00-28.00)] | 0.00 [0.00-0.00 (0.00-3.50)] | t = 1.02 | 0.480 | 0.00 [0.00-0.00 (0.00-7.00)] | 0.00 [0.00-0.00 (0.00-48.00)] | t = -1.58 | 0.139 |
Table 3.
Effects of different anesthesia on GCS of TBI patients on postoperative day 1, 3, and 7 analyzed using GAMM"
Items | Craniotomy group | Decompressive craniectomy group | Total | |||||
---|---|---|---|---|---|---|---|---|
β (95%CI) | P value | β (95%CI) | P value | β (95%CI) | P value | |||
Unadjusted | ||||||||
Propofol on admission | Ref | Ref | Ref | |||||
Sevoflurane on admission | 0.59 (-1.00, 2.18) | 0.470 | -0.23 (-1.64, 1.19) | 0.755 | 0.10 (-0.95, 1.15) | 0.853 | ||
Propofol postoperative day 1 | 0.53 (-0.10, 1.16) | 0.098 | 0.05 (-0.62, 0.73) | 0.878 | 0.31 (-0.16, 0.77) | 0.195 | ||
Propofol postoperative day 3 | 0.82 (0.17, 1.46) | 0.014 | 0.54 (-0.18, 1.27) | 0.145 | 0.69 (0.21, 1.18) | 0.005 | ||
Propofol postoperative day 7 | 1.52 (0.86, 2.17) | <0.001 | 1.16 (0.38, 1.93) | 0.004 | 1.36 (0.86, 1.86) | <0.001 | ||
Sevoflurane-Propofol postoperative day 1 | -1.73 (-2.79, -0.68) | 0.001 | -0.57 (-1.50, 0.36) | 0.234 | -1.07 (-1.76, -0.38) | 0.003 | ||
Sevoflurane-Propofol postoperative day 3 | -1.96 (-3.04, -0.87) | <0.001 | 0.08 (-0.92, 1.07) | 0.876 | -0.72 (-1.45, 0.00) | 0.052 | ||
Sevoflurane-Propofol postoperative day 7 | -1.27 (-2.36, -0.18) | 0.023 | -0.47 (-1.50, 0.57) | 0.376 | -0.83 (-1.56, -0.09) | 0.029 | ||
Adjusted | ||||||||
Propofol on admission | Ref | Ref | Ref | |||||
Sevoflurane on admission | 0.75 (-0.55, 2.05) | 0.260 | -0.03 (-1.11, 1.05) | 0.959 | 0.25 (-0.59, 1.09) | 0.555 | ||
Propofol postoperative day 1 | 0.53 (-0.11, 1.17) | 0.105 | 0.07 (-0.61, 0.76) | 0.833 | 0.31 (-0.15, 0.78) | 0.188 | ||
Propofol postoperative day 3 | 0.86 (0.20, 1.52) | 0.011 | 0.54 (-0.20, 1.28) | 0.152 | 0.70 (0.21, 1.19) | 0.005 | ||
Propofol postoperative day 7 | 1.55 (0.88, 2.22) | <0.001 | 1.17 (0.38, 1.96) | 0.004 | 1.38 (0.87, 1.88) | <0.001 | ||
Sevoflurane-Propofol postoperative day 1 | -1.73 (-2.81, -0.66) | 0.002 | -0.59 (-1.54, 0.36) | 0.225 | -1.08 (-1.78, -0.38) | 0.003 | ||
Sevoflurane-Propofol postoperative day 3 | -2.03 (-3.14, -0.91) | <0.001 | 0.06 (-0.95, 1.08) | 0.905 | -0.75 (-1.48, -0.02) | 0.045 | ||
Sevoflurane-Propofol postoperative day 7 | -1.31 (-2.43, -0.19) | 0.022 | -0.52 (-1.57, 0.53) | 0.330 | -0.88 (-1.62, -0.13) | 0.021 |
Table 4.
Effects of propofol and sevoflurane maintenance anesthesia on the risk of unfavorable GOS at discharge analyzed with multivariate regression analysis"
Exposure | Craniotomy group | Decompressive craniectomy group | Total | |||||
---|---|---|---|---|---|---|---|---|
OR (95%CI) | P value | OR (95%CI) | P value | OR (95%CI) | P value | |||
Unadjusted | ||||||||
Propofol | 1.00 | 1.00 | 1.00 | |||||
Sevoflurane | 1.98 (0.83, 4.75) | 0.125 | 1.53 (0.69, 3.37) | 0.294 | 1.72 (0.95, 3.09) | 0.072 | ||
Adjusted | ||||||||
Propofol | 1.00 | 1.00 | 1.0 | |||||
Sevoflurane | 4.93 (1.05, 23.03) | 0.043 | 1.01 (0.35, 2.97) | 0.982 | 1.58 (0.72, 3.45) | 0.250 |
1 |
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2018 ; 130(4):1-18. doi: 10.3171/2017.10.JNS17352.
doi: 10.3171/2017.10.JNS17352 |
2 |
Kaisti KK, Metsahonkala L, Teras M, et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 2002 ; 96(6):1358-70. doi: 10.1097/00000542-200206000-00015.
doi: 10.1097/00000542-200206000-00015 |
3 |
Liao R, Li J, Liu J. Volatile induction/maintenance of anaesthesia with sevoflurane increases jugular venous oxygen saturation and lumbar cerebrospinal fluid pressure in patients undergoing craniotomy. Eur J Anaesthesiol 2010 ; 27(4):369-76. doi: 10.1097/EJA.0b013e32832edc70.
doi: 10.1097/EJA.0b013e32832edc70 |
4 |
Hawryluk GW, Manley GT. Classification of traumatic brain injury: past, present, and future. Handb Clin Neurol 2015; 127:15-21. doi: 10.1016/B978-0-444-52892-6.00002-7.
doi: 10.1016/B978-0-444-52892-6.00002-7 pmid: 25702207 |
5 |
Rimel RW, Giordani B, Barth JT, et al. Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery 1982 ; 11(3):344-51. doi: 10.1227/00006123-198209000-00002.
doi: 10.1227/00006123-198209000-00002 |
6 |
McMillan T, Wilson L, Ponsford J, et al. The Glasgow Outcome Scale— 40 years of application and refinement. Nat Rev Neurol 2016 ; 12(8):477-85. doi: 10.1038/nrneurol.2016.89.
doi: 10.1038/nrneurol.2016.89 |
7 |
Oertel M, Kelly DF, McArthur D, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J Neurosurg 2002 ; 96(1):109-16. doi: 10.3171/jns.2002.96.1.0109.
doi: 10.3171/jns.2002.96.1.0109 |
8 |
Jost JN. Primary decompressive craniectomy after traumatic brain injury: a literature review. Cureus 2022 ; 14(10): e29894. doi: 10.7759/cureus.29894.
doi: 10.7759/cureus.29894 |
9 |
Yang C, Zhang JR, Zhu G. Effects of primary decompressive craniectomy on the outcomes of serious traumatic brain injury with mass lesions, and independent predictors of operation decision. World Neurosurg 2021; 148:e396-e405. doi: 10.1016/j.wneu.2020.12.158.
doi: 10.1016/j.wneu.2020.12.158 pmid: 33422716 |
10 |
Kim H, Suh SJ, Kang HJ, et al. Predictable values of decompressive craniectomy in patients with acute subdural hematoma: comparison between decompressive craniectomy after craniotomy group and craniotomy only group. Korean J Neurotrauma 2018 ; 14(1):14-9. doi: 10.13004/kjnt.2018.14.1.14.
doi: 10.13004/kjnt.2018.14.1.14 |
11 |
Hutchinson PJ, Kolias AG, Tajsic T, et al. Consensus statement from the International Consensus Meeting on the role of decompressive craniectomy in the management of traumatic brain injury: consensus statement. Acta Neurochir (Wien) 2019 ; 161(7):1261-74. doi: 10.1007/s00701-019-03936-y.
doi: 10.1007/s00701-019-03936-y |
12 |
Tapper J, Skrifvars MB, Kivisaari R, et al. Primary decompressive craniectomy is associated with worse neurological outcome in patients with traumatic brain injury requiring acute surgery. Surg Neurol Int 2017; 8:141. doi: 10.4103/sni.sni_453_16.
doi: 10.4103/sni.sni_453_16 pmid: 28781918 |
13 |
Phan K, Moore JM, Griessenauer C, et al. Craniotomy versus decompressive craniectomy for acute subdural hematoma: systematic review and meta-analysis. World Neurosurg 2017; 101:677-85.e672. doi: 10.1016/j.wneu.2017.03.024.
doi: 10.1016/j.wneu.2017.03.024 |
14 |
Mosenthal AC, Lavery RF, Addis M, et al. Isolated traumatic brain injury: age is an independent predictor of mortality and early outcome. J Trauma 2002 ; 52(5):907-11. doi: 10.1097/00005373-200205000-00015.
doi: 10.1097/00005373-200205000-00015 |
15 |
Lieberman JD, Pasquale MD, Garcia R, et al. Use of admission Glasgow Coma Score, pupil size, and pupil reactivity to determine outcome for trauma patients. J Trauma 2003 ; 55(3):437-42; discussion 442-3. doi: 10.1097/01.TA.0000081882.79587.17.
doi: 10.1097/01.TA.0000081882.79587.17 |
16 |
Gutowski P, Meier U, Rohde V, et al. Clinical outcome of epidural hematoma treated surgically in the era of modern resuscitation and trauma care. World Neurosurg 2018; 118:e166-e74. doi: 10.1016/j.wneu.2018.06.147.
doi: 10.1016/j.wneu.2018.06.147 |
17 |
Komurcu O, Dost B, Ozdemir E, et al. Red blood cell transfusion and hemoglobin level on neurological outcome in the first 24 hours of traumatic brain injury. Am J Emerg Med 2022; 59:74-8. doi: 10.1016/j.ajem.2022.06.058.
doi: 10.1016/j.ajem.2022.06.058 pmid: 35809538 |
18 |
Maas AI, Hukkelhoven CW, Marshall LF, et al. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 2005 ; 57(6):1173-82; discussion 1173-82. doi: 10.1227/01.neu.0000186013.63046.6b.
doi: 10.1227/01.neu.0000186013.63046.6b |
19 |
Alali AS, Temkin N, Barber J, et al. A clinical decision rule to predict intracranial hypertension in severe traumatic brain injury. J Neurosurg 2018 ; 131(2):612-9. doi: 10.3171/2018.4.JNS173166.
doi: 10.3171/2018.4.JNS173166 |
20 |
Maas AI, Steyerberg EW, Butcher I, et al. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007 ; 24(2):303-14. doi: 10.1089/neu.2006.0033.
doi: 10.1089/neu.2006.0033 |
21 |
Collaborators MCT, Perel P, Arango M, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008 ; 336(7641):425-9. doi: 10.1136/bmj.39461.643438.25.
doi: 10.1136/bmj.39461.643438.25 |
22 |
Maas AI, Marmarou A, Murray GD, et al. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J Neurotrauma 2007 ; 24(2):232-8. doi: 10.1089/neu.2006.0024.
doi: 10.1089/neu.2006.0024 |
23 |
Hagiwara A, Kushimoto S, Kato H, et al. Can early aggressive administration of fresh frozen plasma improve outcomes in patients with severe blunt trauma?—A report by the Japanese Association for the Surgery of Trauma. Shock 2016 ; 45(5):495-501. doi: 10.1097/SHK.0000000000000536.
doi: 10.1097/SHK.0000000000000536 |
24 |
Haltmeier T, Benjamin E, Gruen JP, et al. Decreased mortality in patients with isolated severe blunt traumatic brain injury receiving higher plasma to packed red blood cells transfusion ratios. Injury 2018 ; 49(1):62-6. doi: 10.1016/j.injury.2017.07.035.
doi: 10.1016/j.injury.2017.07.035 |
25 |
Zhao Z, Wang D, Jia Y, et al. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J Neurol Sci 2016; 364:12-8. doi: 10.1016/j.jns.2016.03.007.
doi: 10.1016/j.jns.2016.03.007 pmid: 27084207 |
26 |
Alnemari AM, Krafcik BM, Mansour TR, et al. A comparison of pharmacologic therapeutic agents used for the reduction of intracranial pressure after traumatic brain injury. World Neurosurg 2017; 106:509-28. doi: 10.1016/j.wneu.2017.07.009.
doi: S1878-8750(17)31108-7 pmid: 28712906 |
27 |
Ma J, Xiao W, Wang J, Wu J, et al. Propofol inhibits NLRP 3 inflammasome and attenuates blast-induced traumatic brain injury in rats. Inflammation 2016 ; 39(6):2094-103. doi: 10.1007/s10753-016-0446-8.
doi: 10.1007/s10753-016-0446-8 |
28 |
Liu F, Chen MR, Liu J, et al. Propofol administration improves neurological function associated with inhibition of pro-inflammatory cytokines in adult rats after traumatic brain injury. Neuropeptides 2016; 58:1-6. doi: 10.1016/j.npep.2016.03.004.
doi: 10.1016/j.npep.2016.03.004 pmid: 27045803 |
29 |
Liu S, Sun JY, Ren LP, et al. Propofol attenuates intermittent hypoxia induced up-regulation of proinflammatory cytokines in microglia through inhibiting the activation of NF-Bkappa/p 38 MAPK signalling. Folia Neuropathol 2017 ; 55(2):124-31. doi: 10.5114/fn.2017.68579.
doi: 10.5114/fn.2017.68579 |
30 |
Luo T, Wu J, Kabadi SV, et al. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology 2013 ; 119(6):1370-88. doi: 10.1097/ALN.0000000000000020.
doi: 10.1097/ALN.0000000000000020 |
31 |
Yang WC, Zhou LJ, Zhang R, et al. Effects of propofol and sevoflurane on aquaporin-4 and aquaporin-9 expression in patients performed gliomas resection. Brain Res 2015; 1622: 1-6. doi: 10.1016/j.brainres.2015.05.042.
doi: 10.1016/j.brainres.2015.05.042 |
32 |
Ding Z, Zhang J, Xu J, et al. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys 2013 ; 67(2):615-22. doi: 10.1007/s12013-013-9549-0.
doi: 10.1007/s12013-013-9549-0 |
33 |
He H, Liu W, Zhou Y, et al. Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des Devel Ther 2018; 12:629-38. doi: 10.2147/DDDT.S158313.
doi: 10.2147/DDDT.S158313 |
34 |
Zhang L, Zhang J, Yang L, et al. Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br J Anaesth 2013; 110 Suppl 1(Suppl 1):i82-91. doi: 10.1093/bja/aet115.
doi: 10.1093/bja/aet115 |
35 |
Hassan W, Nasir YM, Zaini RHM, et al. Target-controlled infusion propofol versus sevoflurane anaesthesia for emergency traumatic brain surgery: comparison of the outcomes. Malays J Med Sci 2017 ; 24(5):73-82. doi: 10.21315/mjms2017.24.5.8.
doi: 10.21315/mjms2017.24.5.8 |
[1] | Ming-chao Fan, Qiao-ling Wang, Wei Fang, Yun-xia Jiang, Lian-di Li, Peng Sun, Zhi-hong Wang. Early Enteral Combined with Parenteral Nutrition Treatment for Severe Traumatic Brain Injury: Effects on Immune Function, Nutritional Status and Outcomes [J]. Chinese Medical Sciences Journal, 2016, 31(4): 213-220. |
[2] | Xiang Quan, Tie-hu Ye, Si-fang Lin, Liang Zou, Shou-yuan Tian. Propofol Affects Different Human Brain Regions Depending on Depth of Sedation [J]. Chinese Medical Sciences Journal, 2015, 30(3): 135-142. |
[3] | Wan-fu Liu, Chao Liu. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats [J]. Chinese Medical Sciences Journal, 2015, 30(2): 100-107. |
[4] | Xiao-dong Qu, Resha Shrestha and Mao-de Wang* . Risk Factors Analysis on Traumatic Brain Injury Prognosis [J]. Chinese Medical Sciences Journal, 2011, 26(2): 98-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1