Chinese Medical Sciences Journal ›› 2023, Vol. 38 ›› Issue (3): 163-177.doi: 10.24920/004203
Special Issue: 指南与共识
• Guideline & Consensus • Next Articles
Hai-Jun Wang1, Wei Chen2, Hong-Zhi Wang3, He-Ling Zhao4, Dong-Hao Wang5, *(), Yun Long6, *(), Xue-Zhong Xing1, *(), on behalf of the Critical Care Medicine Committee of Beijing Association of Oncology (CCMBAO)
Received:
2022-12-27
Accepted:
2022-05-06
Published:
2023-09-30
Online:
2023-09-21
Contact:
* Dong-hao Wang, Hai-Jun Wang, Wei Chen, Hong-Zhi Wang, He-Ling Zhao, Dong-Hao Wang, Yun Long, Xue-Zhong Xing, on behalf of the Critical Care Medicine Committee of Beijing Association of Oncology (CCMBAO). Expert Consensus on Acute Respiratory Failure in Critically Ill Cancer Patients (2023)[J].Chinese Medical Sciences Journal, 2023, 38(3): 163-177.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
RECOMMENDATIONS SUMMARY |
---|
Recommendation 1. Metagenomic next-generation sequencing (mNGS) may aid clinicians in rapid diagnosis of pulmonary infections in critically ill cancer patients (moderate quality, strong recommendation). |
Recommendation 2. Critically ill cancer patients with acute respiratory failure (ARDS) are associated with increased 28-day mortality compared with critically ill non-cancer patients, disregarding whether they receive conventional treatment or extracorpored membrane oxygenation (ECMO) rescue therapy (high quality, strong recommendation). ECMO should not be used as a routine rescue therapy for critically ill cancer patients with ARDS, and only highly selected patients determined after a multi-disciplinary consultation may benefit from ECMO therapy (high quality, strong recommendation). |
Recommendation 3. Cancer patients who have received immune checkpoint inhibitor (ICI) therapy have an elevated incidence of pneumonitis compared with standard chemotherapy (high quality, strong recommendation). Intensivists should be alert to ICI-related high-grade pneumonitis (high quality, strong recommendation). |
Recommendation 4. Critically ill cancer patients on invasive mechanical ventilation who are estimated to require extubation beyond 14 days may benefit from early tracheotomy (within 3-7 days of intubation). This can lead to reduced 28-day mortality without affecting the duration of mechanical ventilation and the rate of ventilator-associated pneumonia (moderate quality, strong recommendation). |
Recommendation 5. For critically ill cancer patients with acute respiratory failure, high-flow nasal oxygen or noninvasive ventilation therapy is superior to standard oxygen therapy with a reduced intubation rate and can be used as a first-line oxygen strategy (moderate quality, strong recommendation). |
Recommendation 6. Urgent chemotherapy may be considered for selected critically ill cancer patients with acute respiratory failure caused by tumor compression. The decision should be made after a multidisciplinary consultation, which determines that the tumor is potentially sensitive to anticancer therapy (low quality, weak recommendation). |
Figure 1.
Diagnostic performance of metagenomic next-generation sequencing (mNGS) for pulmonary infection compared with standard cultures. (A) Pooled diagnostic odds ratios (OR) of mNGS. (B) Pooled sensitivity of mNGS. (C) Pooled specificity of mNGS. (D) Summary of receiver operating characteristic curves of mNGS. SROC, symmetric receiver operating characteristic curves."
Figure 2.
Comparison of the 28-day mortalities in critically ill cancer patients with critically ill non-cancer patients who underwent conventional ventilation or extracorporeal membrane oxygenation (ECMO) therapy. (A) The 28-day mortality of critically ill non-cancer patients who underwent conventional ventilation. (B) The 28-day mortality of critically ill cancer patients who underwent conventional ventilation. (C) The 28-day mortality of critically ill cancer patients who underwent ECMO therapy."
Figure 3.
Comparison of incidence of pneumonitis between patients on immune checkpoint inhibitor (ICI) therapy and chemotherapy. (A) All-grade pneumonitis between ICI therapy (experimental) group and chemotherapy (control) group. (B) Grade 3-5 pneumonitis between ICI therapy (experimental) group and chemotherapy (control) group."
Figure 4.
Comparison of short-term outcomes between early and late tracheostomy in critically ill cancer patients with invasive mechanical ventilation. (A) Twenty-eight-day mortality between early and late tracheostomy group. (B) Incidence of ventilator-associated pneumonia between early and late tracheotomy group. (C) The difference in mechanical ventilation duration between the early and late tracheostomy groups. (D) Funnel plot demonstrates that there is no publication bias in the studies on 28-day mortality. Experimental refers to the early tracheotomy group; control refers to the late tracheotomy group."
Figure 5.
Comparison of outcomes between high-flow nasal oxygen (HFNO) or noninvasive ventilation (NIV) therapy and standard oxygen therapy. (A) Endotracheal ventilation rate between HFNO or NIV therapy and standard oxygen therapy. (B) The in-hospital mortality rate between HFNO or NIV therapy and standard oxygen therapy. Experimental refers to standard oxygen therapy group; Control refers to HFNO or NIV group."
"
Hai-Jun Wang | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College |
Xue-Zhong Xing | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College |
Mei-Li Duan | Beijing Friendship Hospital, Capital Medical University |
Shuang-Ling Li | Peking University First Hospital, Peking University |
Yuan-Yu Qian | Chinese PLA General Hospital |
Zhi-Qiang Wang | Tianjin Medical University General Hospital |
Ke-Liang Cui | Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital |
Lan Wang | Dongzhimen Hospital, Beijing University of Chinese Medicine |
Zhen-Li Peng | Chui yang liu Hospital affiliated to Tsinghua University |
Nian-Fang Lu | Beijing Electric Power Hospital |
Yong-Shun Feng | Beijing Coal Group General Hospita |
Li-Wei Hua | Affiliated Hospital of Chengde Medical University |
Ya-Ling Sun | Changping traditional Chinese Medicine Hospital of Beijing |
Lei Li | Fifth Medical Center of the PLA General Hospital |
Xiu-Mei Chen | Beijing Miyun Hospital |
Xue-Jun Zhou | Beijing Huairou Hospital |
Wen-Xian Zhao | Beijing Puren Hospital |
Xian-Feng Lu | Beijing Zhongguanchun Hospital |
Jun Dong | Peking University Cancer Hospital & Institute |
Wei-Shuai Bian | Beijing Shijitan Hospital, Capital Medical University |
1 | Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 204(3):303-11. doi: 10.1164/rccm.202009-3467OC. |
2 |
Vigneron C, Charpentier J, Valade S, et al. Patterns of ICU admissions and outcomes in patients with solid malignancies over the revolution of cancer treatment. Ann Intensive Care 2021; 11(1):182. doi: 10.1186/s13613-021-00968-5.
pmid: 34951668 |
3 |
Kaufmann K, Heinrich S. Minimizing postoperative pulmonary complications in thoracic surgery patients. Curr Opin Anaesthesiol 2021; 34(1):13-9. doi: 10.1097/ACO.0000000000000945.
pmid: 33315642 |
4 |
Gutierrez C, McEvoy C, Munshi L, et al. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit Care Med 2020; 48(1):10-21. doi: 10.1097/CCM.0000000000004087.
pmid: 31725440 |
5 |
Kochanek M, Kochanek J, Böll B, et al. Veno-venous extracorporeal membrane oxygenation (vv-ECMO) for severe respiratory failure in adult cancer patients: a retrospective multicenter analysis. Intensive Care Med 2022; 48(3): 332-42. doi: 10.1007/s00134-022-06635-y.
pmid: 35146534 |
6 |
Kanji S, MacLean E, Rashid FJ, et al. Chemotherapy in the intensive care unit: an evaluation of context and outcomes. Can J Hosp Pharm 2020; 73(4):279-87.
pmid: 33100360 |
7 | Meert AP, Wittnebel S, Holbrechts S, et al. Critically ill cancer patients consensus conference group. Critically ill cancer patient’s resuscitation: a Belgian/French societies’ consensus conference. Intensive Care Med 2021; 47(10):1063-77. doi: 10.1007/s00134-021-06508-w. |
8 |
Pastores SM, Goldman DA, Shaz DJ, et al. Characteristics and outcomes of patients with hematologic malignancies receiving chemotherapy in the intensive care unit. Cancer 2018; 124(14):3025-36. doi: 10.1002/cncr.31409.
pmid: 29727916 |
9 | Zampieri FG, Romano TG, Salluh JIF, et al. Trends in clinical profiles, organ support use and outcomes of patients with cancer requiring unplanned ICU admission: a multicenter cohort study. Intensive Care Med 2021; 47(2):170-9. doi: 10.1007/s00134-020-06184-2. |
10 | van der Zee EN, Termorshuizen F, Benoit DD, et al. One-year mortality of cancer patients with an unplanned ICU admission: a cohort analysis between 2008 and 2017 in the Netherlands. J Intensive Care Med 2022; 37(9):1165-73. doi: 10.1177/08850666211054369. |
11 | Guyatt GH, Oxman AD, Vist GE, et al. GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336(7650):924-6. doi: 10.1136/bmj.39489.470347.AD. |
12 | Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis 2018; 67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. |
13 | Conte P, Ascierto PA, Patelli G, et al. Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment. ESMO Open 2022; 7(2):100404. doi: 10.1016/j.esmoop.2022.100404. |
14 |
Wang J, Han Y, Feng J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis. BMC Pulm Med 2019; 19(1):252. doi: 10.1186/s12890-019-1022-4.
pmid: 31856779 |
15 |
Chen P, Sun W, He Y. Comparison of the next-generation sequencing (NGS) technology with culture Methods in the diagnosis of bacterial and fungal infections. J Thorac Dis 2020; 12(9):4924-9. doi: 10.21037/jtd-20-930.
pmid: 33145066 |
16 |
Zhou H, Larkin PMK, Zhao D, et al. Clinical impact of metagenomic next-generation sequencing of bronchoalveolar lavage in the diagnosis and management of pneumonia: a multicenter prospective observational study. J Mol Diagn 2021; 23(10):1259-68. doi: 10.1016/j.jmoldx.2021.06.007.
pmid: 34197923 |
17 |
Xie G, Zhao B, Wang X, et al. Exploring the clinical utility of metagenomic next-generation sequencing in the diagnosis of pulmonary infection. Infect Dis Ther 2021; 10(3):1419-35. doi: 10.1007/s40121-021-00476-w.
pmid: 34117999 |
18 | Sun T, Wu X, Cai Y, et al. Metagenomic next-generation sequencing for pathogenic diagnosis and antibiotic management of severe community-acquired pneumonia in immunocompromised adults. Front Cell Infect Microbiol 2021; 11:661589. doi: 10.3389/fcimb.2021.661589. |
19 | Chen J, Zhao Y, Shang Y, et al. The clinical significance of simultaneous detection of pathogens from bronchoalveolar lavage fluid and blood samples by metagenomic next-generation sequencing in patients with severe pneumonia. J Med Microbiol 2021; 70(1). doi: 10.1099/jmm.0.001259. |
20 |
Shao J, Hassouna A, Wang Y, et al. Next-generation sequencing as an advanced supplementary tool for the diagnosis of pathogens in lower respiratory tract infections: An observational trial in Xi’an, China. Biomed Rep 2022; 16(2):14. doi: 10.3892/br.2021.1497.
pmid: 35070298 |
21 | Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 2008; 13(5):1120-7. doi: 10.1378/chest.07-2134. |
22 |
Bellani G, Laffey JG, Pham T, et al. LUNG SAFE investigators; ESICM trials group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315(8):788-800. doi: 10.1001/jama.2016.0291.
pmid: 26903337 |
23 |
Azoulay E, Pickkers P, Soares M, et al. Efraim investigators and the Nine-I study group. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med 2017; 43(12):1808-19. doi: 10.1007/s00134-017-4947-1.
pmid: 28948369 |
24 | Young D, Lamb SE, Shah S, et al. OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368(9):806-13. doi: 10.1056/NEJMoa1215716. |
25 | Ferguson ND, Cook DJ, Guyatt GH, et al. OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368(9):795-805. doi: 10.1056/NEJMoa1215554. |
26 | Guérin C, Reignier J, Richard JC, et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368(23):2159-68. doi: 10.1056/NEJMoa1214103. |
27 | McAuley DF, Laffey JG, O’Kane CM, et al. HARP-2 Investigators; Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371(18):1695-703. doi: 10.1056/NEJMoa1403285. |
28 |
Kacmarek RM, Villar J, Sulemanji D, et al. Open Lung Approach Network. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med 2016; 44(1):32-42. doi: 10.1097/CCM.0000000000001383.
pmid: 26672923 |
29 |
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial ART Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318(14):1335-45. doi: 10.1001/jama.2017.14171.
pmid: 28973363 |
30 | Moss M, Huang DT, Brower RG, et al. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019; 380(21):1997-2008. doi: 10.1056/NEJMoa1901686. |
31 | Beitler JR, Sarge T, Banner-Goodspeed VM, et al. EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2019; 321(321):846-57. doi: 10.1001/jama.2019.0555. |
32 | Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med 2019; 200(11):1363-72. doi: 10.1164/rccm.201901-0109OC. |
33 |
Villar J, Ferrando C, Martínez D, et al. dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3):267-76. doi: 10.1016/S2213-2600(19)30417-5.
pmid: 32043986 |
34 | Ranieri VM, Pettilä V, Karvonen MK, et al. INTEREST Study Group. Effect of intravenous interferon β-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: a randomized clinical trial. JAMA 2020; 323(8):725-33. doi: 10.1001/jama.2019.22525. |
35 |
Türkoğlu M, Erdem GU, Suyanı E, et al. Acute respiratory distress syndrome in patients with hematological malignancies. Hematology 2013; 18(3):123-30. doi: 10.1179/1607845412Y.0000000038.
pmid: 23321772 |
36 |
Azoulay E, Lemiale V, Mokart D, et al. Acute respiratory distress syndrome in patients with malignancies. Intensive Care Med 2014; 40(8):1106-14. doi: 10.1007/s00134-014-3354-0.
pmid: 24898895 |
37 |
Lagier D, Platon L, Chow-Chine L, et al. Severity of Acute Respiratory Distress Syndrome in haematology patients: long-term impact and early predictive factors. Anaesthesia 2016; 71(9):1081-90. doi: 10.1111/anae.13542.
pmid: 27418297 |
38 |
Blanc K, Zaimi R, Dechartres A, et al. Early acute respiratory distress syndrome after pneumonectomy: Presentation, management, and short- and long-term outcomes. J Thorac Cardiovasc Surg 2018; 156(4):1706-14.e5. doi: 10.1016/j.jtcvs.2018.06.021.
pmid: 30060929 |
39 | Fang LJ, Chen LY, Sun JH, et al. Clinical characteristics and outcomes of acute lung injury caused by transcatheter arterial chemoembolization for hepatocellular carcinoma: a retrospective cohort study from a single institution in China. Anal Cell Pathol (Amst) 2019; 2019:4307651. doi: 10.1155/2019/4307651. |
40 | Choi H, Shin B, Yoo H, et al. Early corticosteroid treatment for postoperative acute lung injury after lung cancer surgery. Ther Adv Respir Dis 2019; 13:1753466619840256. doi: 10.1177/1753466619840256. |
41 |
Seong GM, Lee Y, Hong SB, et al. Prognosis of acute respiratory distress syndrome in patients with hematological malignancies. J Intensive Care Med 2020; 35(4):364-70. doi: 10.1177/0885066617753566.
pmid: 29343171 |
42 | Combes A, Hajage D, Capellier G, et al. EOLIA Trial Group, REVA, and ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 2018; 378(21):1965-75. doi: 10.1056/NEJMoa1800385. |
43 | Wohlfarth P, Beutel G, Lebiedz P, et al. Intensive Care in Hematologic and Oncologic Patients (iCHOP); Caring for Critically Ill Immunocompromised Patients Multinational Network (NINE-I). Characteristics and outcome of patients after allogeneic hematopoietic stem cell transplantation treated with extracorporeal membrane oxygenation for acute respiratory distress syndrome. Crit Care Med 2017; 45(5):e500-e507. doi: 10.1097/CCM.0000000000002293. |
44 | Stecher SS, Beyer G, Goni E, et al. Extracorporeal membrane oxygenation in predominantly leuco- and thrombocytopenic haematologic/oncologic patients with acute respiratory distress syndrome: a single-centre experience. Oncol Res Treat 2018; 41(9):539-43. doi: 10.1159/000489718. |
45 | Schmidt M, Schellongowski P, Patroniti N, et al. IDEA Study Group. Six-month outcome of immunocompromised patients with severe acute respiratory distress syndrome rescued by extracorporeal membrane oxygenation. An international multicenter retrospective study. Am J Respir Crit Care Med 2018; 197(10):1297-307. doi: 10.1164/rccm.201708-1761OC. |
46 |
Rilinger J, Zotzmann V, Bemtgen X, et al. Influence of immunosuppression in patients with severe acute respiratory distress syndrome on veno-venous extracorporeal membrane oxygenation therapy. Artif Organs 2021; 45(9):1050-60. doi: 10.1111/aor.13954.
pmid: 33725377 |
47 |
Su Q, Zhu EC, Wu JB, et al. Risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors for solid tumors: a systematic review and meta-analysis. Front Immunol 2019; 10:108. doi: 10.3389/fimmu.2019.00108.
pmid: 30778352 |
48 | National Cancer Institute. DCTD Division of Cancer Treatment & Diagnosis. Protocol Development. Common Terminology Criteria for Adverse Events (CTCAE). Available from https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm. Updated April 19, 2021; accessed July 8, 2022. |
49 |
Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 2013; 31(5):616-22. doi: 10.1200/JCO.2012.44.6112.
pmid: 23295794 |
50 | Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373(2):123-35. doi: 10.1056/NEJMoa1504627. |
51 | Motzer RJ, Escudier B, McDermott DF, et al. CheckMate 025 investigators. nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373(19):1803-13. doi: 10.1056/NEJMoa1510665. |
52 |
Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16(4):375-84. doi: 10.1016/S1470-2045(15)70076-8.
pmid: 25795410 |
53 | Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373(17):1627-39. doi: 10.1056/NEJMoa1507643. |
54 | Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4):320-30. doi: 10.1056/NEJMoa1412082. |
55 |
Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 2015; 16(8):908-18. doi: 10.1016/S1470-2045(15)00083-2.
pmid: 26115796 |
56 | Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19):1856-67. doi: 10.1056/NEJMoa1602252. |
57 |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387(10027):1540-50. doi: 10.1016/S0140-6736(15)01281-7.
pmid: 26712084 |
58 | Reck M, Rodríguez-Abreu D, Robinson AG, et al. KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375(19):1823-33. doi: 10.1056/NEJMoa1606774. |
59 | Carbone DP, Reck M, Paz-Ares L, et al. CheckMate 026 Investigators. First-line nivolumab in stage iv or recurrent non-small-cell lung cancer. N Engl J Med 2017; 376(25):2415-26. doi: 10.1056/NEJMoa1613493. |
60 | Bellmunt J, de Wit R, Vaughn DJ, et al. KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017; 376(11):1015-26. doi: 10.1056/NEJMoa1613683. |
61 | Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018; 378(22):2093-104. doi: 10.1056/NEJMoa1801946. |
62 |
Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. Lancet Oncol 2018; 19(11):1468-79. doi: 10.1016/S1470-2045(18)30673-9.
pmid: 30262187 |
63 |
Shitara K, Özgüroğlu M, Bang YJ, et al. KEYNOTE-061 Investigators. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018; 392(10142):123-33. doi: 10.1016/S0140-6736(18)31257-1.
pmid: 29880231 |
64 |
Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019; 20(11):1506-17. doi: 10.1016/S1470-2045(19)30626-6.
pmid: 31582355 |
65 | Wu YL, Lu S, Cheng Y, et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase III clinical trial. J Thorac Oncol 2019; 14(5):867-75. doi: 10.1016/j.jtho.2019.01.006. |
66 |
Cohen EEW, Soulières D, Le Tourneau C, et al. KEYNOTE-040 Investigators. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019; 393(10167):156-67. doi: 10.1016/S0140-6736(18)31999-8.
pmid: 30509740 |
67 |
Mok TSK, Wu YL, Kudaba I, et al. KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019; 393(10183):1819-30. doi: 10.1016/S0140-6736(18)32409-7.
pmid: 30955977 |
68 |
Powles T, van der Heijden MS, Castellano D, et al. DANUBE study investigators. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 2020; 21(12):1574-88. doi: 10.1016/S1470-2045(20)30541-6.
pmid: 32971005 |
69 | Shitara K, Van Cutsem E, Bang YJ, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 Phase 3 randomized clinical trial. JAMA Oncol 2020; 6(10):1571-80. doi: 10.1001/jamaoncol.2020.3370. |
70 | Rizvi NA, Cho BC, Reinmuth N, et al. MYSTIC Investigators. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: The MYSTIC Phase 3 randomized clinical trial. JAMA Oncol 2020; 6(5):661-74. doi: 10.1001/jamaoncol.2020.0237. |
71 | Atchley WT, Alvarez C, Saxena-Beem S, et al. Immune checkpoint inhibitor-related pneumonitis in lung cancer: real-world incidence, risk factors, and management practices across six health care centers in north carolina. Chest 2021; 160(2):731-42. doi: 10.1016/j.chest.2021.02.032. |
72 | Balaji A, Hsu M, Lin CT, et al. Steroid-refractory PD-(L)1 pneumonitis: incidence, clinical features, treatment, and outcomes. J Immunother Cancer 2021; 9(1):e001731. doi: 10.1136/jitc-2020-001731. |
73 | Sears CR, Peikert T, Possick JD, et al. Knowledge gaps and research priorities in immune checkpoint inhibitor-related pneumonitis. An official American thoracic society research statement. Am J Respir Crit Care Med 2019; 200(6):e31-e43. doi: 10.1164/rccm.201906-1202ST. |
74 | Chorath K, Hoang A, Rajasekaran K, et al. Association of early vs late tracheostomy placement with pneumonia and ventilator days in critically ill patients: a meta-analysis. JAMA Otolaryngol Head Neck Surg 2021; 147(5):450-9. doi: 10.1001/jamaoto.2021.0025. |
75 | Deng H, Fang Q, Chen K, et al. Early versus late tracheotomy in ICU patients: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100(3):e24329. doi: 10.1097/MD.0000000000024329. |
76 |
Saffle JR, Morris SE, Edelman L. Early tracheostomy does not improve outcome in burn patients. J Burn Care Rehabil 2002; 23(6):431-8. doi: 10.1097/00004630-200211000-00009.
pmid: 12432320 |
77 |
Rumbak MJ, Newton M, Truncale T, et al. A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med 2004; 32(8):1689-94. doi: 10.1097/01.ccm.0000134835.05161.b6.
pmid: 15286545 |
78 | Bouderka MA, Fakhir B, Bouaggad A, et al. Early tracheostomy versus prolonged endotracheal intubation in severe head injury. J Trauma 2004; 57(2):251-4. doi: 10.1097/01.ta.0000087646.68382.9a. |
79 | Barquist ES, Amortegui J, Hallal A, et al. Tracheostomy in ventilator dependent trauma patients: a prospective, randomized intention-to-treat study. J Trauma 2006; 60(1):91-7. doi: 10.1097/01.ta.0000196743.37261.3f. |
80 | Blot F, Similowski T, Trouillet JL, et al. Early tracheotomy versus prolonged endotracheal intubation in unselected severely ill ICU patients. Intensive Care Med 2008; 34(10):1779-87. doi: 10.1007/s00134-008-1195-4. |
81 |
Terragni PP, Antonelli M, Fumagalli R, et al. Early vs late tracheotomy for prevention of pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA 2010; 303(15):1483-9. doi: 10.1001/jama.2010.447.
pmid: 20407057 |
82 | Trouillet JL, Luyt CE, Guiguet M, et al. Early percutaneous tracheotomy versus prolonged intubation of mechanically ventilated patients after cardiac surgery: a randomized trial. Ann Intern Med 2011; 154(6):373-83. doi: 10.7326/0003-4819-154-6-201103150-00002. |
83 | Koch T, Hecker B, Hecker A, et al. Early tracheostomy decreases ventilation time but has no impact on mortality of intensive care patients: a randomized study. Langenbecks Arch Surg 2012; 397(6):1001-8. doi: 10.1007/s00423-011-0873-9. |
84 | Zheng Y, Sui F, Chen XK, et al. Early versus late percutaneous dilational tracheostomy in critically ill patients anticipated requiring prolonged mechanical ventilation. Chin Med J (Engl) 2012; 125(11):1925-30. |
85 | Young D, Harrison DA, Cuthbertson BH, et al. TracMan Collaborators. Effect of early vs late tracheostomy placement on survival in patients receiving mechanical ventilation: the TracMan randomized trial. JAMA 2013; 309(20):2121-9. doi: 10.1001/jama.2013.5154. |
86 |
Bösel J, Schiller P, Hook Y, et al. Stroke-related early tracheostomy versus prolonged orotracheal intubation in neurocritical care trial (SETPOINT): a randomized pilot trial. Stroke 2013; 44(1):21-8. doi: 10.1161/STROKEAHA.112.669895.
pmid: 23204058 |
87 | Diaz-Prieto A, Mateu A, Gorriz M, et al. A randomized clinical trial for the timing of tracheotomy in critically ill patients: factors precluding inclusion in a single center study. Crit Care 2014; 18(5):585. doi: 10.1186/s13054-014-0585-y. |
88 |
Dunham CM, Cutrona AF, Gruber BS, et al. Early tracheostomy in severe traumatic brain injury: evidence for decreased mechanical ventilation and increased hospital mortality. Int J Burns Trauma 2014; 4(1):14-24.
pmid: 24624310 |
89 | Karlovíc Z, Vladic D, Peric M, et al. The impact of early percutaneous tracheotomy on reduction of the incidence of ventilator associated pneumonia andthe course and outcome of ICU patients. Signa Vitae 2018; 14(1):75-80. doi: 10.22514/SV141.052018.13 |
90 | Oczkowski S, Ergan B, Bos L, et al. ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J 2022; 59(4):2101574. doi: 10.1183/13993003.01574-2021. |
91 | Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 2001; 44(7):481-7. doi: 10.1056/NEJM200102153440703. |
92 | Lemiale V, Mokart D, Resche-Rigon M, et al. Groupe de Recherche en Réanimation Respiratoire du patient d’Onco-Hématologie (GRRR-OH). Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA 2015; 14(16):1711-9. doi: 10.1001/jama.2015.12402. |
93 | Lemiale V, Mokart D, Mayaux J, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care 2015; 19:380. doi: 10.1186/s13054-015-1097-0. |
94 |
Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 2018; 320(20):2099-107. doi: 10.1001/jama.2018.14282.
pmid: 30357270 |
95 | Mokart D, Geay C, Chow-Chine L, et al. High-flow oxygen therapy in cancer patients with acute respiratory failure. Intensive Care Med 2015; 1(11):2008-10. doi: 10.1007/s00134-015-3994-8. |
96 | Frat JP, Ragot S, Girault C, et al. REVA network. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. Lancet Respir Med 2016; 4(8):646-52. doi: 10.1016/S2213-2600(16)30093-5. |
97 | Judickas Š, Stasiūnaitis R, Žučenka A, et al. Outcomes and risk factors of critically ill patients with hematological malignancy. Prospective single-centre observational study. Medicina (Kaunas) 2021; 57(12):1317. doi: 10.3390/medicina57121317. |
98 |
Darmon M, Thiery G, Ciroldi M, et al. Intensive care in patients with newly diagnosed malignancies and a need for cancer chemotherapy. Crit Care Med 2005; 33(11):2488-93. doi: 10.1097/01.ccm.0000181728.13354.0a.
pmid: 16276171 |
99 | Benoit DD, Depuydt PO, Vandewoude KH, et al. Outcome in severely ill patients with hematological malignancies who received intravenous chemotherapy in the intensive care unit. Intensive Care Med 2006; 32(1):93-9. doi: 10.1007/s00134-005-2836-5. |
100 | Song JU, Suh GY, Chung MP, et al. Risk factors to predict outcome in critically ill cancer patients receiving chemotherapy in the intensive care unit. Support Care Cancer 2011; 19(4):491-5. doi: 10.1007/s00520-010-0841-x. |
101 |
Wohlfarth P, Staudinger T, Sperr WR, et al. Arbeitsgruppe für hämato-onkologische Intensivmedizin der Österreichischen Gesellschaft für Internistische und Allgemeine Intensivmedizin und Notfallmedizin (ÖGIAIN). Prognostic factors, long-term survival, and outcome of cancer patients receiving chemotherapy in the intensive care unit. Ann Hematol 2014; 93(10):1629-36. doi: 10.1007/s00277-014-2141-x.
pmid: 24997682 |
102 |
Kerrigan K, Shoben A, Otterson G. Treatment of lung cancer patients with actionable mutations in the intensive care unit. Clin Lung Cancer 2016; 17(6):523-7. doi: 10.1016/j.cllc.2016.04.004.
pmid: 27256487 |
103 | Zerbib Y, Rabbat A, Fartoukh M, et al. Groupe de Recherche sur la Réanimation Respiratoire en Onco-Hématologie (GRRR-OH). Urgent chemotherapy for life-threatening complications related to solid neoplasms. Crit Care Med 2017; 45(7):e640-e648. doi: 10.1097/CCM.0000000000002331. |
104 |
Barth C, Soares M, Toffart AC, et al. Lung Cancer in Critical Care (LUCCA) Study Investigators. Characteristics and outcome of patients with newly diagnosed advanced or metastatic lung cancer admitted to intensive care units (ICUs). Ann Intensive Care 2018; 8(1):80. doi: 10.1186/s13613-018-0426-2.
pmid: 30076547 |
105 |
Pastores SM, Goldman DA, Shaz DJ, et al. Characteristics and outcomes of patients with hematologic malignancies receiving chemotherapy in the intensive care unit. Cancer 2018; 124(14):3025-36. doi: 10.1002/cncr.31409.
pmid: 29727916 |
106 | Cherruault M, Le Goff M, Tamburini J, et al. Urgent chemotherapy in sepsis-like shock related to hematologic malignancies. Crit Care Med 2018; 46(5):e465-e468. doi: 10.1097/CCM.0000000000002990. |
107 |
Kanji S, MacLean E, Rashid FJ, et al. Chemotherapy in the intensive care unit: an evaluation of context and outcomes. Can J Hosp Pharm 2020; 73(4):279-87.
pmid: 33100360 |
108 | Nasser A, Hartwick M, Kyeremanteng K, et al. Chemotherapy for non-small cell lung cancer in the intensive care unit. Cancer Treat Res Commun 2021; 26:100294. doi: 10.1016/j.ctarc.2020.100294. |
109 | Lee IH, Yang CY, Shih JY, et al. Tyrosine kinase inhibitors improved survival of critically ill EGFR-mutant lung cancer patients undergoing mechanical ventilation. Biomedicines 2021; 9(10):1416. doi: 10.3390/biomedicines9101416. |
110 | Tandjaoui-Lambiotte Y, Akrour Y, Gibelin A, et al. Tyrosine kinase inhibitors for acute respiratory failure because of non-small-cell lung cancer involvement in the ICU. Chest 2022; 161(1):284-7. doi: 10.1016/j.chest.2021.06.079. |
111 | Moors I, Pène F, Lengline É, et al. Urgent chemotherapy in hematological patients in the ICU. Curr Opin Crit Care 2015;559-68. doi: 10.1097/MCC.0000000000000254. |
112 | Yan P, Hao QX, Song LC, et al. The value of microbiology rapid on-site evaluation of sepsis caused by pulmonary infection. Eur Rev Med Pharmacol Sci 2023; 27(12):5862-8. doi: 10.26355/eurrev_202306_32825. |
113 |
Grasselli G, Calfee CS, Camporota L, et al. European Society of Intensive Care Medicine Taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49(7):727-59. doi: 10.1007/s00134-023-07050-7.
pmid: 37326646 |
114 | Yang L, Li B, Xu Y, et al. Pneumonitis with combined immune checkpoint inhibitors and chemoradiotherapy in locally advanced non-small-cell lung cancer: a systematic review and meta-analysis. Future Oncol 2023; 19(16):1151-60. doi: 10.2217/fon-2022-1274. |
115 | Bhasarkar A, Dolma K. Utility of early tracheostomy in critically ill Covid-19 patients: a systematic review. Indian J Otolaryngol Head Neck Surg 2023; 75(3):1-11. doi: 10.1007/s12070-022-03280-1. |
116 |
Fujishima S. Guideline-based management of acute respiratory failure and acute respiratory distress syndrome. J Intensive Care 2023; 11(1):10. doi: 10.1186/s40560-023-00658-3.
pmid: 36895001 |
117 | Bernard J, Vacheron CH, Vantard N, et al. Outcome and factors associated with mortality in patients receiving urgent chemotherapy in the ICU: a retrospective study. J Crit Care 2023; 78:154399. doi: 10.1016/j.jcrc.2023.154399. |
[1] | An-Yi Song, Lan Mu, Xiao-Yong Dai, Li-Jun Wang, Lai-Qiang Huang. Analysis of Significant Genes and Pathways in Esophageal Cancer Based on Gene Expression Omnibus Database [J]. Chinese Medical Sciences Journal, 2023, 38(1): 20-28. |
[2] | Chun Wang, Qinxue Chang, Xiaomeng Wang, Keyun Wang, He Wang, Zhuang Cui, Changping Li. Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm [J]. Chinese Medical Sciences Journal, 2022, 37(3): 210-217. |
[3] | Siwen Ouyang, Weiming Kang. Research Advances in the Role of Keratins in Gastrointestinal Cancer [J]. Chinese Medical Sciences Journal, 2022, 37(1): 73-78. |
[4] | Liang Wang, Gang Li, Yun-tao Bing, Mao-lin Tian, Hangyan Wang, Chunhui Yuan, Dianrong Xiu. Does Prior Cancer Have an Influence on the Survival Outcomes of Patients with Localized Pancreatic Neuroendocrine Tumors? [J]. Chinese Medical Sciences Journal, 2021, 36(4): 284-294. |
[5] | Wei Yang, Mei Zhang. Biomarkers with Potential Predictive Value for Cardiotoxicity in Anticancer Treatments [J]. Chinese Medical Sciences Journal, 2021, 36(4): 333-341. |
[6] | Chen Xu, Huo Xiaofei, Wu Zhe, Lu Jingjing. Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers [J]. Chinese Medical Sciences Journal, 2021, 36(3): 196-203. |
[7] | Qiwen Yang,Xiaoling Ma,Fupin Hu,Jing Zhang,Tongwen Sun,Baiyi Chen,Yingchun Xu,Youning Liu,China Medical Education Association ,Expert Committee on Infectious Diseases, China Medical Education Association . Expert Consensus on Polymyxin Antimicrobial Susceptibility Testing and Clinical Interpretation [J]. Chinese Medical Sciences Journal, 2021, 36(1): 1-16. |
[8] | Xu Chen, Hongling Liu, Fenghui Zhao, Zongxian Jiao, Jinsui Wang, Yamei Dang. Wnt5a Plays Controversial Roles in Cancer Progression [J]. Chinese Medical Sciences Journal, 2020, 35(4): 357-365. |
[9] | Xiaoqi Zeng, Shanshan Jiang, Yuanyang Peng, Minfeng Liu, Changsheng Ye, Jianyu Dong. Trastuzumab-Induced Severe Thrombocytopenia:A Case Report and Literature Review [J]. Chinese Medical Sciences Journal, 2020, 35(4): 377-382. |
[10] | Li Wenxing, Zhang Yanli. Novel Long Non-coding RNA Markers for Prognostic Prediction of Patients with Bladder Cancer [J]. Chinese Medical Sciences Journal, 2020, 35(3): 239-247. |
[11] | Wang Zhan, Wang Xu, Wang Wenda, Zheng Guoyang, Guo Hao, Zhang Yushi. Value of Preoperative Neutrophil-to-Lymphocyte Ratio in Predicting Prognosis of Surgically Resectable Urinary Cancers: Systematic Review and Meta-Analysis [J]. Chinese Medical Sciences Journal, 2020, 35(3): 262-271. |
[12] | Xu Longming,Dai Shuiping,Zuo Yunxia. Impacts of Preoperative Smoking and Smoking Cessation Time on Preoperative Peripheral Blood Inflammatory Indexes and Postoperative Hospitalization Outcome in Male Patients with Lung Cancer and Surgery Treatment [J]. Chinese Medical Sciences Journal, 2020, 35(2): 170-178. |
[13] | Zhang Ling, Sun Lei, Mu Xiaoyan, Ji Youxin. Bevacizumab Combined with Icotinib Overcomes Osimertinib Resistance in a Patient of Non-Small Cell Lung Cancer [J]. Chinese Medical Sciences Journal, 2019, 34(4): 292-296. |
[14] | Liang Xi, Hu Jingnan, He Jianming. An Optimized Protocol of Azoxymethane-Dextran Sodium Sulfate Induced Colorectal Tumor Model in Mice [J]. Chinese Medical Sciences Journal, 2019, 34(4): 281-288. |
[15] | Bao Yi, Mo Juanfen, Wu Jiayuan, Cao Chenxi. Expression of PD1 and BTLA on the CD8+ T Cell and γδT Cell Subsets in Peripheral Blood of Non-Small Cell Lung Cancer Patients [J]. Chinese Medical Sciences Journal, 2019, 34(4): 248-255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1