Chinese Medical Sciences Journal ›› 2020, Vol. 35 ›› Issue (3): 215-225.doi: 10.24920/003594
• Original Article • Previous Articles Next Articles
Liu Lianye1, 2, Shi Bingyin1, Zhao Fengyi1, Hou Peng1, Liu Shu1, Liu Xiaomei1, 3, Wu Liping1, *()
Received:
2019-10-25
Published:
2020-09-30
Online:
2020-09-25
Contact:
Wu Liping
E-mail:plwzw999@163.com
Liu Lianye, Shi Bingyin, Zhao Fengyi, Hou Peng, Liu Shu, Liu Xiaomei, Wu Liping. Effect of Dihydrotestosterone on CostimulatoryMolecules in a Mouse Model of Graves’ Disease[J].Chinese Medical Sciences Journal, 2020, 35(3): 215-225.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Primer sequences for PCR amplification"
Genes | Forward primers | Reverse primers | Fragment size (bp) |
---|---|---|---|
CTLA-4 | 5’-TGGGTTCAAACACATCTCAAGGC-3’ | 5’-TGTCGTGGCACAGACCTCAG-3’ | 349 |
BTLA | 5’-GCCATTCAGTAACCATCCATGTG-3’ | 5’-GCAAGGTGTAAAGCAGCCAAGTC-3’ | 150 |
PD-1 | 5’-CCGCTTCCAGATCATACAG-3’ | 5’-CTCTGGCCTCTGACATACTTG-3’ | 329 |
TIM-3 | 5’-AGCCCATGTGGAAATTTTTG-3’ | 5’-CTCCAAGAACCCTAACCACG-3’ | 95 |
CD28 | 5’-GTGGTTGCTGGAGTCCGTT-3’ | 5’-GCTGGTAAGGCTTTCGAGTG-3’ | 151 |
ICOS | 5’-GTCAAACAACAGCGTCTC-3’ | 5’-TGCAAATATCCTCCACTAA-3’ | 129 |
OX40 | 5’-GTAGACCAGGCACCCAACC-3’ | 5’-GGCCAGACTGTGGTGGATTGG-3’ | 268 |
CD154 | 5’-ACGTTGTAAGCGAAGCCAAC-3’ | 5’-TATCCTTTCTTGGCCCACTG-3’ | 61 |
GAPDH | 5’-CATGACCACAGTCCATGCCAT-3’ | 5’-TCAGATCCACGACGGACACATT-3’ | 215 |
Table 2
TBI and serum levels of thyroid hormones in mice§"
Groups | n | TBIa (%) | TT4 (nmol/L) | FT4 (pmol/L) |
---|---|---|---|---|
Control group | 12 | 0.67±6.91 | 38.22±10.18 | 4.13±2.02 |
EAGD group | 10 | 80.30±11.31 | 159.33±76.58 | 18.43±11.21 |
t value | 20.31 | 5.446 | 4.354 | |
P value | <0.0001 | <0.0001 | 0.0003 | |
Placebo1.5 mg DHT | 10 | 79.10±11.13 | 130.37±62.03 | 15.57±12.26 |
1.5 mg DHT group | 11 | 70.36±10.01 | 75.29±35.78 | 11.09±5.02 |
t value | 1.894 | 2.524 | 1.116 | |
P value | 0.07 | 0.02 | 0.28 | |
Placebo5 mg DHT | 10 | 81.50±7.75 | 154.31±71.69 | 16.69±12.24 |
5 mg DHT group | 11 | 70.00±20.09 | 78.12±32.18 | 6.831±3.02 |
t value | 1.696 | 4.962 | 2.554 | |
P value | 0.11 | 0.01 | 0.02 | |
Placebo15 mg DHT | 9 | 80.11±11.24 | 136.81±72.20 | 17.89±12.16 |
15 mg DHT group | 11 | 69.82±12.81 | 75.80±53.15 | 6.90±4.38 |
t value | 1.972 | 2.176 | 2.799 | |
P value | 0.06 | 0.04 | 0.01 |
Figure 1.
Thyroid histological pictures of female BALB/c mice with experimental autoimmune Graves’ disease. Histological examination shows compared with the mice pretreated with 5?-DHT, the mice in the placebo group have larger thyroid follicles with epithelial cells intruding into the follicular lumen, and more follicular cells. HE staining."
Figure 2.
Comparisons of mRNA expressions of costimulatory molecule genes in the spleen (A) and the thymus (B). Six to eight weeks old female BALB/c mice were injected with 109 particles of Ad-TSHR289 diluted in 50 ml PBS for 3 times at one-week interval (EAGD group). Meanwhile, BALB/c mice receiving null adenovirus injection served as the Control (Con). A week before immunization, mouse was implanted with a pellet containing 5 mg DHT (DHT group) or matching placebo (Placebo group). The spleen and the thymus were obtained respectively 4 weeks after the third immunization. The extracted total RNAs from the spleen and the thymus were used to analyze mRNA expressions of costimulatory molecule genes with quantitative real-time PCR assay. Data are expressed as the means±SD. Con (n=12), EAGD (n=10), Placebo (n=10), DHT (n=11). ***P<0.001, **P<0.01, *P<0.05."
1. | Menconi F, Marcocci C, Marino M. Diagnosis and classification of Graves’ disease. Autoimmun Rev 2014; 4-5(13):398-402. doi: 10.1016/j.autrev.2014.01.013. |
2. | Bossowski A, Stasiak-Barmuta A, Urban M. Relationship between CTLA-4 and CD28 molecule expression on T lymphocytes and stimulating and blocking autoantibodies to the TSH-receptor in children with Graves’ disease. Horm Res 2005; 4(64):189-97. doi: 10.1159/000088875. |
3. | Garapati VP, Lefranc MP. IMGT Colliers de Perles and IgSF domain standardization for T cell costimulatory activatory (CD28, ICOS) and inhibitory (CTLA-4, PDCD1 and BTLA) receptors. Dev Comp Immunol 2007; 10(31):1050-72. doi: 10.1016/j.dci.2007.01.008. |
4. | Pawlak-Adamska E, Frydecka I, Bolanowski M, et al. CD28/CTLA-4/ICOS haplotypes confers susceptibility to Graves’ disease and modulates clinical phenotype of disease. Endocrine 2017; 1(55):186-99. doi: 10.1007/s12020-016-1096-1. |
5. |
Watanabe N, Nakajima H. Coinhibitory molecules in autoimmune diseases. Clin Dev Immunol 2012; 2012:269756. doi: 10.1155/2012/269756.
pmid: 22997525 |
6. | Turka LA, Ledbetter JA, Lee K, et al. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol 1990; 5(144):1646-53. |
7. | Matsuoka N, Eguchi K, Kawakami A, et al. Lack of B7-1/BB1 and B7-2/B70 expression on thyrocytes of patients with Graves’ disease. Delivery of costimulatory signals from bystander professional antigen-presenting cells. J Clin Endocrinol Metab 1996; 11(81):4137-43. doi: 10.1210/jcem.81.11.8923872. |
8. | Eagar TN, Karandikar NJ, Bluestone JA, et al. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 2002; 4(32):972-81. doi: 10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M. |
9. | Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999; 6716(397):263-6. doi: 10.1038/16717. |
10. | Wassink L, Vieira PL, Smits HH, et al. ICOS expression by activated human Th cells is enhanced by IL-12 and IL-23: increased ICOS expression enhances the effector function of both Th1 and Th2 cells. J Immunol 2004; 3(173):1779-86. doi: 10.4049/jimmunol.173.3.1779. |
11. |
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11):3887-95.
pmid: 1396582 |
12. | Carter LL, Carreno BM. Cytotoxic T-lymphocyte antigen-4 and programmed death-1 function as negative regulators of lymphocyte activation. Immunol Res 2003; 1(28):49-59. doi: 10.1385/IR:28:1:49. |
13. | Watanabe N, Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 2003; 7(4):670-9. doi: 10.1038/ni944. |
14. | Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 2005; 1(6):90-8. doi: 10.1038/ni1144. |
15. | Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 6871(415):536-41. doi: 10.1038/415536a. |
16. | Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 12(6):1245-52. doi: 10.1038/ni1271. |
17. | Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 4(104):487-501. |
18. | Hollenbaugh D, Grosmaire LS, Kullas CD, et al. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J 1992; 12(11):4313-21. |
19. | Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 4(30):165-72. doi: 10.1016/j.it.2009.01.004. |
20. |
Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 2005; 23:23-68. doi: 10.1146/annurev.immunol.23.021704.115839.
doi: 10.1146/annurev.immunol.23.021704.115839 pmid: 15771565 |
21. | Gramaglia I, Jember A, Pippig SD, et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 2000; 6(165):3043-50. |
22. | Lumachi F, Basso SM, Orlando R. Cytokines, thyroid diseases and thyroid cancer. Cytokine 2010; 3(50):229-33. doi: 10.1016/j.cyto.2010.03.005. |
23. | Ansar AS, Young PR, Penhale WJ. Beneficial effect of testosterone in the treatment of chronic autoimmune thyroiditis in rats. J Immunol 1986; 1(136):143-7. |
24. |
Fassler R, Dietrich H, Kromer G, et al. The role of testosterone in spontaneous autoimmune thyroiditis of Obese strain (OS) chickens. J Autoimmun 1988; 1(1):97-108.
doi: 10.1016/0896-8411(88)90081-9 pmid: 3076054 |
25. | Paschke R, Schuppert F, Taton M, et al. Intrathyroidal cytokine gene expression profiles in autoimmune thyroiditis. J Endocrinol 1994; 2(141):309-15. |
26. | Endo T, Kobayashi T. Immunization with thyroglobulin induces Graves’-like disease in mice. J Endocrinol 2009; 2(202):217-22. doi: 10.1677/JOE-09-0089. |
27. | Liu L, Wu L, Gao A, et al. The influence of dihydrotestosterone on the development of Graves’ disease in female BALB/c mice. Thyroid 2016; 3(26):449-57. doi: 10.1089/thy.2015.0620. |
28. | Chen CR, Pichurin P, Nagayama Y, et al. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Invest 2003; 12(111):1897-904. doi: 10.1172/JCI17069. |
29. | Nagayama Y, Mizuguchi H, Hayakawa T, et al. Prevention of autoantibody-mediated Graves’-like hyperthyroidism in mice with IL-4, a Th2 cytokine. J Immunol 2003; 7(170):3522-7. |
30. | Mostafa S, Seamon V, Azzarolo AM. Influence of sex hormones and genetic predisposition in Sjogren’s syndrome: a new clue to the immunopathogenesis of dry eye disease. Exp Eye Res 2012; 1(96):88-97. doi: 10.1016/j.exer.2011.12.016. |
31. | Wu L, Xun L, Yang J, et al. Induction of murine neonatal tolerance against Graves’ disease using recombinant adenovirus expressing the TSH receptor A-subunit. Endocrinology 2011; 3(152):1165-71. doi: 10.1210/en.2010-0737. |
32. | Yessoufou A, Ple A, Moutairou K, et al. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells. J Lipid Res 2009; 12(50):2377-88. doi: 10.1194/jlr.M900101-JLR200. |
33. | Han LF, Qiu WM, Hu C, et al. Therapeutic effects of B and T lymphocyte attenuator extracellular domain and heat shock protein 70 antigen peptide on cervical cancer in mouse model. Zhonghua Fu Chan Ke Za Zhi 2010; 8(45):603-8. |
34. | Bishop KD, Harris JE, Mordes JP, et al. Depletion of the programmed death-1 receptor completely reverses established clonal anergy in CD4(+) T lymphocytes via an interleukin-2-dependent mechanism. Cell Immunol 2009; 1-2(256):86-91. doi: 10.1016/j.cellimm.2009.01.008. |
35. | Lech M, Susanti HE, Rommele C, et al. Quantitative expression of C-type lectin receptors in humans and mice. Int J Mol Sci 2012; 8(13):10113-31. doi: 10.3390/ijms130810113. |
36. | Teague TK, Tan C, Marino JH, et al. CD28 expression redefines thymocyte development during the pre-T to DP transition. Int Immunol 2010; 5(22):387-97. doi: 10.1093/intimm/dxq020. |
37. | Zang YS, Fang Z, Liu YA, et al. Repressor of GATA-3 can negatively regulate the expression of T cell cytokines through modulation on inducible costimulator. Chin Med J (Engl) 2012; 12(125):2188-94. |
38. | Tone Y, Kojima Y, Furuuchi K, et al. OX40 gene expression is up-regulated by chromatin remodeling in its promoter region containing Sp1/Sp3, YY1, and NF-kappa B binding sites. J Immunol 2007; 3(179):1760-7. |
39. | Vavassori S, Shi Y, Chen CC, et al. In vivo post-transcriptional regulation of CD154 in mouse CD4+ T cells. Eur J Immunol 2009; 8(39):2224-32. doi: 10.1002/eji.200839163. |
40. | Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by costimulation. J Clin Invest 2002; 3(109):295-9. doi: 10.1172/JCI14941. |
41. | Yoshie N, Watanabe M, Inoue N, et al. Association of polymorphisms in the ICOS and ICOSL genes with the pathogenesis of autoimmune thyroid diseases. Endocr J 2016; 1(63):61-8. doi: 10.1507/endocrj.EJ15-0435. |
42. | Wang H, Zhu LS, Cheng JW, et al. CD40 ligand induces expression of vascular cell adhesion molecule 1 and E-selectin in orbital fibroblasts from patients with Graves’ orbitopathy. Graefes Arch Clin Exp Ophthalmol 2015; 4(253):573-82. doi: 10.1007/s00417-014-2902-1. |
43. | Dong C, Nurieva RI, Prasad DV. Immune regulation by novel costimulatory molecules. Immunol Res 2003; 1(28):39-48. doi: 10.1385/IR:28:1:39. |
44. |
Kaneyama T, Tomiki H, Tsugane S, et al. The TIM-3 pathway ameliorates Theiler’s murine encephalomyelitis virus-induced demyelinating disease. Int Immunol 2014; 7(26):369-81. doi: 10.1093/intimm/dxt056.
doi: 10.1093/intimm/7.3.369 |
45. | Seki M, Oomizu S, Sakata KM, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 2008; 1(127):78-88. doi: 10.1016/j.clim.2008.01.006. |
46. | Fijak M, Schneider E, Klug J, et al. Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: evidence for a direct role of testosterone on regulatory T cell expansion. J Immunol 2011; 9(186):5162-72. doi: 10.4049/jimmunol.1001958. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1