Chinese Medical Sciences Journal ›› 2021, Vol. 36 ›› Issue (3): 196-203.doi: 10.24920/003963
Special Issue: 人工智能与精准肿瘤学
• Review • Previous Articles Next Articles
Chen Xu1, Huo Xiaofei1, Wu Zhe2, Lu Jingjing1, *()
Received:
2021-06-30
Accepted:
2021-08-24
Published:
2021-09-30
Online:
2021-08-30
Contact:
Lu Jingjing
E-mail:cjr.lujingjing@vip.163.com
The article bring up the advances of AI in medical diagnosis, pathological classification, targeted biopsy guidance, and prognosis prediction of ovarian cancers. |
Chen Xu, Huo Xiaofei, Wu Zhe, Lu Jingjing. Advances of Artificial Intelligence Application in Medical Imaging of Ovarian Cancers[J].Chinese Medical Sciences Journal, 2021, 36(3): 196-203.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Basic information of publications of AI associated medical imaging studies on ovarian cancers"
Reference | Year | Country | Study type | Imaging modality | Patients No. (n) | Mean/Median age(y/d) | Clinical orientation | Radiomics model | AI model | Validations | Radiomics extraction tools | AI tools |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Song XL, et al. [ | 2021 | China | P | MRI | 89 | 52 | M | Radiomics nomogram | LASSO regression | Yes (internal) | ITK-SNAP | ND |
Wang X, et al. [ | 2021 | China | R | PET/CT | 261 | 57 | PFS | Cox regression | ND | Yes (internal) | SlicerRadomics | ND |
Beer L, et al. [ | 2021 | UK | P | CT/US | 6 | 65 | TB | Radiomic habitats | GMM | No | CERR | MATLAB |
Ai Y, et al. [ | 2021 | China | R | CT | 101 | 52 | M | Radiomics features | Mann-Whitney U tests, LASSO, and Ridge regression | Yes (internal) | LIFEx package | “Glmnet” package |
Qian L, et al. [ | 2020 | China | R | MRI | 61 | 52 | DD | Traditional/Combined/Mixed radiomics | LASSO regression | Yes (internal) | 3D Slicer, PyRadiomics | ND |
Wang R, et al. [ | 2020 | USA | R | MRI | 451 | 48 | DD | BAG, MRMR, TPOT | CNN (EfficientNet, ResNet) | Yes (internal) | “Radiomics-develop” package | Sklearn package in python |
Akazawa M, et al. [ | 2020 | Japan | R | MRI | 202 | 51 | DD | ND | SVM, Random forest, Naive bayes, Logistic regression and XGBoost | No | ITK-SNAP | Keras and Scikit-learn package in python |
Lu H, et al. [ | 2019 | UK | R | CT | 364 | 62 | OS, PFS | RPV | ND | Yes (internal and external) | ITK-SNAP | MATLAB |
Meier A, et al. [ | 2019 | USA | R | CT | 88 | 75 | OS, PFS | ND | ND | No | ITK-SNAP | MATLAB |
Wang S, et al. [ | 2019 | China | R | CT | 245 | 56 | RFS | Cox-PH | CNN | Yes (internal) | Lifelines package in Python | Keras package in Python |
Zhang H, et al. [ | 2019 | China | R | MRI | 280 | 53 | DD, PP | MRI-radiomics | SVM | Yes (internal) | ITK-SNAP | MATLAB |
Martinez-Mas J, et al. [ | 2019 | Spain | R | US | ND | ND | DD | ND | KNN, LD, SVM, ELM | Yes (internal) | Fourier descriptors | MATLAB |
Zargari A, et al. [ | 2018 | USA | R | CT | 120 | 67 | PFS | ND | PSO | Yes (internal) | ND | ND |
Rizzo S, et al. [ | 2018 | Italy | R | CT | 101 | 53 | PFS | ND | ND | No | IBEX | ND |
Wei W, et al. [ | 2018 | China | R | CT | 142 | 50 | PFS | ND | Logistic regression | Yes (internal and external) | ITK-SNAP | MATLAB |
Vargas HA, et al. [ | 2017 | USA | R | CT | 38 | ND | OS | ND | ND | No | 3D Slicer | ND |
Mimura R, et al. [ | 2016 | Japan | R | MRI | 32 | 45 | DD | ADC histogram | ND | No | SPM8, MRIcron | ND |
Aramendia-V V, et al. [ | 2016 | Spain | R | US | 145 | 43 | DD | ND | MLPs | Yes (internal) | ND | MATLAB |
1. | Reid F. World Ovarian Cancer Coalition. World Ovarian Cancer Coalition Atlas 2020. Global trends in incidence, mortality, and survival. Available from . Accessed June 2, 2021. |
2. | National Cancer Institute. Surveillance, Epidemiology, End Result program. SEER Cancer Statistics Review, 1975-2017. Available from https://seer.cancer.gov/archive/csr/1975_2017/results_merged/sect_21_ovary.pdf. Released April 15, 2020. Accessed September 14, 2021. |
3. |
Granter SR, Beck AH, Papke DJ. AlphaGo, deep learning, and the future of the human microscopist. Arch Pathol Lab Med 2017; 141(5):619-21. doi: 10.5858/arpa.2016-0471-ED.
doi: 10.5858/arpa.2016-0471-ED pmid: 28447900 |
4. |
Sone K, Toyohara Y, Taguchi A, et al. Application of artificial intelligence in gynecologic malignancies: a review. J Obstet Gynaecol Res 2021; 47(8):2577-85. doi: 10.1111/jog.14818.
doi: 10.1111/jog.14818 |
5. |
Wang X, Lu Z. Radiomics analysis of PET and CT components of (18) F-FDG PET/CT imaging for prediction of progression-free survival in advanced high-grade serous ovarian cancer. Front Oncol 2021; 11:638124. doi: 10.3389/fonc.2021.638124.
doi: 10.3389/fonc.2021.638124 |
6. | Foronda M. The AI revolution in cancer. Nature portfolio: milestone. Released December 10, 2020; accessed June 10, 2021. Available from https://www.nature.com/articles/d42859-020-00082-9. |
7. |
Panagiotou OA, Hogg LH, Hricak H, et al. Clinical application of computational methods in precision oncology: a review. JAMA Oncol 2020; 6(8):1282-6. doi: 10.1001/jamaoncol.2020.1247.
doi: 10.1001/jamaoncol.2020.1247 pmid: 32407443 |
8. |
Wang R, Cai Y, Lee IK, et al. Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. Eur Radiol 2021; 31(7):4960-71. doi: 10.1007/s00330-020-07266-x.
doi: 10.1007/s00330-020-07266-x |
9. |
Chang K, Beers AL, Bai HX, et al. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol 2019; 21(11):1412-2. doi: 10.1093/neuonc/noz106.
doi: 10.1093/neuonc/noz106 |
10. |
Papp L, Potsch N, Grahovac M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med 2018; 59(6):892-9. doi: 10.2967/jnumed.117.202267.
doi: 10.2967/jnumed.117.202267 |
11. |
Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 2018; 24(5):1073-81. doi: 10.1158/1078-0432.CCR-17-2236.
doi: 10.1158/1078-0432.CCR-17-2236 pmid: 29167275 |
12. |
Zhang X, Yan LF, Hu YC, et al. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget 2017; 8(29):47816-30. doi: 10.18632/oncotarget.18001.
doi: 10.18632/oncotarget.18001 pmid: 28599282 |
13. |
Martinez-Mas J, Bueno-Crespo A, Khazendar S, et al. Evaluation of machine learning methods with fourier transform features for classifying ovarian tumors based on ultrasound images. PLoS One 2019; 14(7):e219388. doi: 10.1371/journal.pone.0219388.
doi: 10.1371/journal.pone.0219388 |
14. |
Zhang L, Huang J, Liu L. Improved deep learning network based in combination with cost-sensitive learning for early detection of ovarian cancer in color ultrasound detecting system. J Med Syst 2019; 43(8):251. doi: 10.1007/s10916-019-1356-8.
doi: 10.1007/s10916-019-1356-8 pmid: 31254110 |
15. |
Aramendia-Vidaurreta V, Cabeza R, Villanueva A, et al. Ultrasound image discrimination between benign and malignant adnexal masses based on a neural network approach. Ultrasound Med Biol 2016; 42(3):742-52. doi: 10.1016/j.ultrasmedbio.2015.11.014.
doi: 10.1016/j.ultrasmedbio.2015.11.014 |
16. |
Yang B, Zhong J, Zhong J, et al. Development and validation of a radiomics nomogram based on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography and clinicopathological factors to predict the survival outcomes of patients with non-small cell lung cancer. Front Oncol 2020; 10:1042. doi: 10.3389/fonc.2020.01042.
doi: 10.3389/fonc.2020.01042 pmid: 32766134 |
17. |
Pi S, Cao R, Qiang JW, et al. Utility of DWI with quantitative ADC values in ovarian tumors: a meta-analysis of diagnostic test performance. Acta Radiol 2018; 59(11):1386-94. doi: 10.1177/0284185118759708.
doi: 10.1177/0284185118759708 |
18. |
Matondang S, Ekawati A, Andrijono , et al. Minimal apparent diffusion coefficient value of the solid component to differentiate borderline and malignant ovarian epithelial tumours: a preliminary report. Pol J Radiol 2020; 85:e250-e253. doi: 10.5114/pjr.2020.95921.
doi: 10.5114/pjr.2020.95921 |
19. |
Mimura R, Kato F, Tha KK, et al. Comparison between borderline ovarian tumors and carcinomas using semi-automated histogram analysis of diffusion-weighted imaging: focusing on solid components. Jpn J Radiol 2016; 34(3):229-37. doi: 10.1007/s11604-016-0518-6.
doi: 10.1007/s11604-016-0518-6 pmid: 26798066 |
20. |
Lee JM, Minasian L, Kohn EC. New strategies in ovarian cancer treatment. Cancer 2019; 125 Suppl 24: 4623-9. doi: 10.1002/cncr.32544.
doi: 10.1002/cncr.32544 |
21. |
Tothill RW, Tinker AV, George J, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 2008; 14(16):5198-208. doi: 10.1158/1078-0432.CCR-08-0196.
doi: 10.1158/1078-0432.CCR-08-0196 |
22. |
Akazawa M, Hashimoto K. Artificial intelligence in ovarian cancer diagnosis. Anticancer Res 2020; 40(8):4795-800. doi: 10.21873/anticanres.14482.
doi: 10.21873/anticanres.14482 |
23. |
Zhang H, Mao Y, Chen X, et al. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: a preliminary study. Eur Radiol 2019; 29(7):3358-71. doi: 10.1007/s00330-019-06124-9.
doi: 10.1007/s00330-019-06124-9 pmid: 30963272 |
24. |
Anastasi E, Gigli S, Ballesio L, et al. The Complementary role of imaging and tumor biomarkers in gynecological cancers: an update of the literature. Asian Pac J Cancer Prev 2018; 19(2):309-17. doi: 10.22034/APJCP.2018.19.2.309.
doi: 10.22034/APJCP.2018.19.2.309 |
25. |
Qian L, Ren J, Liu A, et al. MR imaging of epithelial ovarian cancer: a combined model to predict histologic subtypes. Eur Radiol 2020; 30(11):5815-25. doi: 10.1007/s00330-020-06993-5.
doi: 10.1007/s00330-020-06993-5 |
26. |
Takaya H, Nakai H, Sakai K, et al. Intratumor heterogeneity and homologous recombination deficiency of high-grade serous ovarian cancer are associated with prognosis and molecular subtype and change in treatment course. Gynecol Oncol 2020; 156(2):415-22. doi: 10.1016/j.ygyno.2019.11.013.
doi: 10.1016/j.ygyno.2019.11.013 |
27. |
Bodelon C, Killian JK, Sampson JN, et al. Molecular classification of epithelial ovarian cancer based on methylation profiling: evidence for survival heterogeneity. Clin Cancer Res 2019; 25(19):5937-46. doi: 10.1158/1078-0432.CCR-18-3720.
doi: 10.1158/1078-0432.CCR-18-3720 pmid: 31142506 |
28. |
Macintyre G, Goranova TE, De Silva D, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 2018; 50(9):1262-70. doi: 10.1038/s41588-018-0179-8.
doi: 10.1038/s41588-018-0179-8 pmid: 30104763 |
29. |
Jimenez-Sanchez A, Memon D, Pourpe S, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 2017; 170(5):927-38. doi: 10.1016/j.cell.2017.07.025.
doi: 10.1016/j.cell.2017.07.025 |
30. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278(2):563-77. doi: 10.1148/radiol.2015151169.
doi: 10.1148/radiol.2015151169 pmid: 26579733 |
31. |
Beer L, Martin-Gonzalez P, Delgado-Ortet M, et al. Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer. Eur Radiol 2021; 31(6):3765-72. doi: 10.1007/s00330-020-07560-8.
doi: 10.1007/s00330-020-07560-8 |
32. |
Forstner R, Sala E, Kinkel K, et al. ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol 2010; 20(12):2773-80. doi: 10.1007/s00330-010-1886-4.
doi: 10.1007/s00330-010-1886-4 |
33. |
Javadi S, Ganeshan DM, Qayyum A, et al. Ovarian cancer, the revised FIGO staging system, and the role of imaging. AJR Am J Roentgenol 2016; 206(6):1351-60. doi: 10.2214/AJR.15.15199.
doi: 10.2214/AJR.15.15199 |
34. |
Michielsen K, Vergote I, Op DBK, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol 2014; 24(4):889-901. doi: 10.1007/s00330-013-3083-8.
doi: 10.1007/s00330-013-3083-8 pmid: 24322510 |
35. |
Nougaret S, Addley HC, Colombo PE, et al. Ovarian carcinomatosis: how the radiologist can help plan the surgical approach. Radiographics 2012; 32(6):1775-800, 1800-03. doi: 10.1148/rg.326125511.
doi: 10.1148/rg.326125511 |
36. |
Solass W, Horvath P, Struller F, et al. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum 2016; 1(3):145-58. doi: 10.1515/pp-2016-0015.
doi: 10.1515/pp-2016-0015 |
37. |
Sehouli J, Grabowski JP. Surgery in recurrent ovarian cancer. Cancer 2019; 125 Suppl 24:4598-601. doi: 10.1002/cncr.32511.
doi: 10.1002/cncr.32511 |
38. |
Song XL, Ren JL, Yao TY, et al. Radiomics based on multisequence magnetic resonance imaging for the preoperative prediction of peritoneal metastasis in ovarian cancer. Eur Radiol 2021; E-pub: May 4, 2021. doi: 10.1007/s00330-021-08004-7.
doi: 10.1007/s00330-021-08004-7 |
39. |
Ai Y, Zhang J, Jin J, et al. Preoperative prediction of metastasis for ovarian cancer based on computed tomography radiomics features and clinical fact-ors. Front Oncol 2021; 11:610742. doi: 10.3389/fonc.2021.610742.
doi: 10.3389/fonc.2021.610742 |
40. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1):7-33. doi: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
41. |
Rambau PF, Vierkant RA, Intermaggio MP, et al. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an ovarian tumor tissue analysis consortium study. J Pathol Clin Res 2018; 4(4):250-61. doi: 10.1002/cjp2.109.
doi: 10.1002/cjp2.109 |
42. |
Parkinson CA, Gale D, Piskorz AM, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med 2016; 13(12):e1002198. doi: 10.1371/journal.pmed.1002198.
doi: 10.1371/journal.pmed.1002198 |
43. |
Schwarz RF, Ng CK, Cooke SL, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 2015; 12(2):e1001789. doi: 10.1371/journal.pmed.1001789.
doi: 10.1371/journal.pmed.1001789 |
44. |
Lu H, Arshad M, Thornton A, et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019; 10(1):764. doi: 10.1038/s41467-019-08718-9.
doi: 10.1038/s41467-019-08718-9 |
45. |
Meier A, Veeraraghavan H, Nougaret S, et al. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer. Abdom Radiol (NY) 2019; 44(6):2040-7. doi: 10.1007/s00261-018-1840-5.
doi: 10.1007/s00261-018-1840-5 |
46. |
Zargari A, Du Y, Heidari M, et al. Prediction of chemotherapy response in ovarian cancer patients using a new clustered quantitative image marker. Phys Med Biol 2018; 63(15):155020. doi: 10.1088/1361-6560/aad3ab.
doi: 10.1088/1361-6560/aad3ab |
47. |
Rizzo S, Botta F, Raimondi S, et al. Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol 2018; 28(11):4849-59. doi: 10.1007/s00330-018-5389-z.
doi: 10.1007/s00330-018-5389-z |
48. |
Wei W, Rong Y, Liu Z, et al. Radiomics: a novel CT-based method of predicting postoperative recurrence in ovarian cancer. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018:4130-33. doi: 10.1109/EMBC.2018.8513351.
doi: 10.1109/EMBC.2018.8513351 pmid: 30441264 |
49. |
Vargas HA, Veeraraghavan H, Micco M, et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur Radiol 2017; 27(9):3991-4001. doi: 10.1007/s00330-017-4779-y.
doi: 10.1007/s00330-017-4779-y |
50. |
Wang S, Liu Z, Rong Y, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiother Oncol 2019; 132:171-7. doi: 10.1016/j.radonc.2018.10.019.
doi: 10.1016/j.radonc.2018.10.019 |
[1] | Ziyang Wang, Yushan Lan, Zidu Xu, Yaowen Gu, Jiao Li. Comparison of Mortality Predictive Models of Sepsis Patients Based on Machine Learning [J]. Chinese Medical Sciences Journal, 2022, 37(3): 201-209. |
[2] | Runnan Cao, Mengjie Fang, Hailing Li, Jie Tian, Di Dong. Semi-supervised Long-tail Endoscopic Image Classification [J]. Chinese Medical Sciences Journal, 2022, 37(3): 171-180. |
[3] | Wei Ba, Shuhao Wang, Cancheng Liu, Yuefeng Wang, Huaiyin Shi, Zhigang Song. Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm [J]. Chinese Medical Sciences Journal, 2021, 36(3): 204-209. |
[4] | Wanshui Yang, Hanyu Jiang, Chao Liu, Jingwei Wei, Yu Zhou, Pengyun Gong, Bin Song, Jie Tian. Multi-Omics and Its Clinical Application in Hepatocellular Carcinoma: Current Progress and Future Opportunities [J]. Chinese Medical Sciences Journal, 2021, 36(3): 173-186. |
[5] | Jiazheng Li, Lei Tang. Radiomics in Antineoplastic Agents Development: Application and Challenge in Response Evaluation [J]. Chinese Medical Sciences Journal, 2021, 36(3): 187-195. |
[6] | Junxiong Yin, Cheng Yu, Lixia Wei, Chuanyong Yu, Hongxing Liu, Mingyang Du, Feng Sun, Chongjun Wang, Xiaoshan Wang. Detection of Asymptomatic Carotid Artery Stenosis in High-Risk Individuals of Stroke Using a Machine-Learning Algorithm [J]. Chinese Medical Sciences Journal, 2020, 35(4): 297-305. |
[7] | Wang Zheng, Zhao Qinghua, Yang Jinglin, Zhou Feng. Enhancing Quality of Patients Care and Improving Patient Experience in China with Assistance of Artificial Intelligence [J]. Chinese Medical Sciences Journal, 2020, 35(3): 286-288. |
[8] | Yang Xiaolin, Wang Zhe, Pan Hongjie, Zhu Yan. Ontology: Footstone for Strong Artificial Intelligence [J]. Chinese Medical Sciences Journal, 2019, 34(4): 277-280. |
[9] | Shi Ying-huan,Wang Qian. The Artificial Intelligence-Enabled Medical Imaging: Today and Its Future [J]. Chinese Medical Sciences Journal, 2019, 34(2): 71-75. |
[10] | Xiao Yi,Liu Shiyuan. Collaborations of Industry, Academia, Research and Application Improve the Healthy Development of Medical Imaging Artificial Intelligence Industry in China [J]. Chinese Medical Sciences Journal, 2019, 34(2): 84-88. |
[11] | Guan Jian. Artificial Intelligence in Healthcare and Medicine: Promises, Ethical Challenges and Governance [J]. Chinese Medical Sciences Journal, 2019, 34(2): 76-83. |
[12] | Chinese Innovative Alliance of Industry, Education, Research and Application of Artificial Intelligence for Medical . Releasing of The White Paper on Medical Imaging Artificial Intelligence in China [J]. Chinese Medical Sciences Journal, 2019, 34(2): 89-89. |
[13] | Dhakal Sweta, Zheng Yun-xi, Yi Xiao-fang. Current Updates on Salpingectomy for the Prevention of Ovarian Cancer and Its Practice Patterns Worldwide [J]. Chinese Medical Sciences Journal, 2017, 32(3): 185-192. |
[14] | Yan Cai, Chun-jie Hu, Jia Wang, Ze-hua Wang. Influence of Deleted in Colorectal Carcinoma Gene on Proliferation of Ovarian Cancer Cell Line SKOV-3 In Vivo and In Vitro [J]. Chinese Medical Sciences Journal, 2011, 26(3): 175-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1