FOLLOWUS
1. 1Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730
2. 2Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000
*liumingsheng_pumch@163.com
Published:30 December 2023,
Published Online:09 October 2023,
Received:10 July 2023,
Accepted:2023-09-08
Scan QR Code
JING FAN, YI LI, JING-WEN NIU, et al. Differentiation Between Amyotrophic Lateral Sclerosis and Mimics Using Quantitative Analysis of Fasciculation with Muscle Ultrasound. [J]. Chinese medical sciences journal, 2023, 38(4): 265-272.
JING FAN, YI LI, JING-WEN NIU, et al. Differentiation Between Amyotrophic Lateral Sclerosis and Mimics Using Quantitative Analysis of Fasciculation with Muscle Ultrasound. [J]. Chinese medical sciences journal, 2023, 38(4): 265-272. DOI: 10.24920/004282.
目的
研究超声束颤对肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)的鉴别诊断价值。
方法
前瞻性收集2017年至2020年在北京协和医院就诊的ALS患者,同时招募神经根神经病患者及健康者分别作为病例对照组和健康对照组。采用医学研究会(Medical Research Council,MRC)量表评估肌力。采用肌肉超声评估ALS及病例对照组患者双侧上下肢16组肌群的最大束颤级别、束颤总分及束颤级别。采用受试者工作特征(receiver operating characteristic,ROC)分析评估最大束颤级别、束颤总分及束颤级别诊断ALS的特异度和敏感度。
结果
束颤最大级别大于2级的ALS患者和神经根神经病患者的比例分别为84.9%的和9.8%,两者比较具有统计学意义(
χ
2
= 101.3,
P
<
0.001)。ALS和神经根神经病患者的束颤总分分别为29(15,41)和3(0,8)[中位数(四分位数间距)
]
。ALS患者中,MRC评分为2和4分患者的肌肉束颤最明显,MRC评分为5分患者的肌肉束颤次之,MRC评分为0和1患者的肌肉束颤最不明显。束颤总分诊断ALS的敏感性和特异性分别为80.6%和93.4%(截断值为14)。对于ALS 患者,MRC评分为4和5的肌肉中,肌肉束颤级别≥3的比例分别为42.3%和24.1%;对于神经根神经病患者,MRC评分为4和5的肌肉中,肌肉束颤级别≥3的比例仅为1.7%和0。
结论
肌肉束颤级别联合肌肉MRC评分有助于ALS的鉴别诊断。
Objective
To determine the diagnostic accuracy of the intensity of fasciculation evaluated by muscle ultrasound in the differential diagnosis of amyotrophic lateral sclerosis (ALS).
Methods
We prospectively recruited patients who had ALS and neuropathy-radiculopathy attending Peking Union Medical College Hospital from 2017 to 2020. Healthy adults from a community were recruited as healthy controls. Muscle strength was assessed using the Medical Research Council (MRC) scale. At the first visit to the hospital
patients were assessed for maximal grade of fasciculations
total fasciculation score
and fasciculation grade in 16 muscle groups of bilateral upper and low
er limbs using ultrasonography. The sensitivity and specificity of maximal grade of fasciculations
total fasciculation score
and fasciculation grade for the diagnosis of ALS were assessed by receiver operating characteristic analyses.
Results
The percentage of limb muscles with a maximal fasciculation grade higher than grade 2 in ALS patients and neuropathy-radiculopathy patients was 84.9% and 9.8%
respectively (
χ
2
= 172.436
P
<
0.01). Of the 16 limb muscles detected
the total fasciculation score [median (interquartile range)
]
was 29 (15
41) in ALS patients and 3 (0
8) in neuropathy-radiculopathy patients (
Z
= 9.642
P
<
0.001). Remarkable fasciculations were seen in ALS patients whose muscles with a MRC score ranging from 2 to 4
followed by patients with MRC score 5
and then in those with MRC score 0 and 1. The sensitivity and specificity of total fasciculation score for diagnosis of ALS were 80.6% and 93.4%
respectively (cut-off value 14). In patients with ALS
for muscles with MRC score 4 and 5
the percentage of muscles with fasciculation grades ≥ 3 was 42.3% and 24.1% respectively
while in neuropathy-radiculopathy patients
the percentage for muscles with MRC score 4 and 5 was only 1.7% and 0
respectively.
Conclusion
A combined analysis of fasciculation intensity and MRC score of the limb muscles may be helpful for differential diagnosis of ALS.
肌萎缩侧索硬化神经根神经病肌肉超声束颤肌力
amyotrophic lateral sclerosisneuropathy-radiculopathymuscle ultrasonographyfasciculationmuscle strength
Misawa S, Noto Y, Shibuya K, et al. Ultrasonographic detection of fasciculations markedly increases diagnostic sensitivity of ALS. Neurology 2011; 77(16):1532-7. doi: 10.1212/WNL.0b013e318233b36ahttps://dx.doi.org/10.1212/WNL.0b013e318233b36a.
Walker FO, Donofrio PD, Harpold GJ, et al. Sonographic imaging of muscle contraction and fasciculations: a correlation with electromyography. Muscle Nerve 1990; 13(1):33-9. doi: 10.1002/mus.880130108https://dx.doi.org/10.1002/mus.880130108.
Reimers CD, Ziemann U, Scheel A, et al. Fasciculations: clinical, electromyographic and ultrasonographic assessment. J Neurol 1996; 243(8):579-84. doi: 10.1007/BF00900945https://dx.doi.org/10.1007/BF00900945.
Scheel AK, Toepfer M, Kunkel M, et al. Ultrasonographic assessment of the prevalence of fasciculations in lesions of the peripheral nervous system. J Neuroimaging 1997; 7(1):23-7. doi: 10.1111/jon19977123https://dx.doi.org/10.1111/jon19977123.
Wenzel S, Herrendorf G, Scheel A, et al. Surface EMG and myosonography in the detection of fasciculations: a comparative study. J Neuroimaging 1998; 8(3):148-54. doi: 10.1111/jon199883148https://dx.doi.org/10.1111/jon199883148.
Grimm A, Prell T, Décard BF, et al. Muscle ultrasonography as an additional diagnostic tool for the diagnosis of amyotrophic lateral sclerosis. Clinl Neurophysiol 2015; 126(4):820-7. doi: 10.1016/j.clinph.2014.06.052https://dx.doi.org/10.1016/j.clinph.2014.06.052.
Johansson MT, Ellegaard HR, Tankisi H, et al. Fasciculations in nerve and muscle disorders-a prospective study of muscle ultrasound compared to electromyography. Clin Neurophysiol 2017; 128(11):2250-7. doi: 10.1016/j.clinph.2017.08.031https://dx.doi.org/10.1016/j.clinph.2017.08.031.
Tsuji Y, Noto Y, Kitaoji T, et al. Difference in distribution of fasciculations between multifocal motor neuropathy and amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131(12):2804-8. doi: 10.1016/j.clinph.2020.08.021https://dx.doi.org/10.1016/j.clinph.2020.08.021.
Tsuji Y, Noto Y, Shiga K, et al. A muscle ultrasound score in the diagnosis of amyotrophic lateral sclerosis. Clinical Neurophysiol 2017; 128(6):1069-74. doi: 10.1016/j.clinph.2017.02.015https://dx.doi.org/10.1016/j.clinph.2017.02.015. https://linkinghub.elsevier.com/retrieve/pii/S1388245717300706https://linkinghub.elsevier.com/retrieve/pii/S1388245717300706
Takamatsu N, Nodera H, Mori A, et al. Which muscle shows fasciculations by ultrasound in patients with ALS? J Med Investigation 2016; 63(1-2):49-53. doi: 10.2152/jmi.63.49https://dx.doi.org/10.2152/jmi.63.49. https://www.jstage.jst.go.jp/article/jmi/63/1.2/63_49/_articlehttps://www.jstage.jst.go.jp/article/jmi/63/1.2/63_49/_article
Hobson-Webb LD, Simmons Z. Ultrasound in the diagnosis and monitoring of amyotrophic lateral sclerosis: a review. Muscle Nerve 2019; 60(2):114-23. doi: 10.1002/mus.26487https://dx.doi.org/10.1002/mus.26487.
O’gorman CM, Weikamp JG, Baria M, et al. Detecting fasciculations in cranial nerve innervated muscles with ultrasound in amyotrophic lateral sclerosis. Muscle Nerve 2017; 56(6):1072-6. doi: 10.1002/mus.25676https://dx.doi.org/10.1002/mus.25676.
Rajabkhah S, Moradi K, Okhovat AA, et al. Application of muscle ultrasound for the evaluation of patients with amyotrophic lateral sclerosis: an observational cross-sectional study. Muscle Nerve 2020; 62(4):516-21. doi: 10.1002/mus.27036https://dx.doi.org/10.1002/mus.27036.
Avidan R, Fainmesser Y, Drory VE, et al. Fasciculation frequency at the biceps brachii and brachialis muscles is associated with amyotrophic lateral sclerosis disease burden and activity. Muscle Nerve 2021; 63(2):204-8. doi: 10.1002/mus.27125https://dx.doi.org/10.1002/mus.27125.
Tsugawa J, Dharmadasa T, Ma Y, et al. Fasciculation intensity and disease progression in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129(10):2149-54. doi: 10.1016/j.clinph.2018.07.015https://dx.doi.org/10.1016/j.clinph.2018.07.015.
Wannop K, Bashford J, Wickham A, et al. Fasciculation analysis reveals a novel parameter that correlates with predicted survival in amyotrophic lateral sclerosis. Muscle Nerve 2021; 63(3):392-6. doi: 10.1002/mus.27139https://dx.doi.org/10.1002/mus.27139.
de Carvalho M, Dengler R, Eisen A, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 2008; 119(3):497-503. doi:10.1016/j.clinph.2007.09.143https://dx.doi.org/10.1016/j.clinph.2007.09.143.
Latov N. Diagnosis of CIDP. Neurology 2002; 59(12 Suppl 6):S2-6. doi: 10.1212/wnl.59.12_suppl_6.s2https://dx.doi.org/10.1212/wnl.59.12_suppl_6.s2.
Van den Bergh PY, Hadden RD, Bouche P, et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society—first revision. Eur J Neurol 2010; 17(3):356-63. doi: 10.1111/j.1468-1331.2009.02930.xhttps://dx.doi.org/10.1111/j.1468-1331.2009.02930.x.
Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 2009; 8(7):654-67. doi: 10.1016/S1474-4422(09)70110-3https://dx.doi.org/10.1016/S1474-4422(09)70110-3
Muhle C, Metzner J, Weinert D, et al. Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR Am J Neuroradiol 1998; 19(9):1763-71.
Paternostro-Sluga T, Grim-Stieger M, Posch M, et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med 2008; 40(8):665-71. doi: 10.2340/16501977-0235https://dx.doi.org/10.2340/16501977-0235.
Duarte ML, Iared W, Oliveira ASB, et al. Ultrasound versus electromyography for the detection of fasciculation in amyotrophic lateral sclerosis: systematic review and meta-analysis. Radiol Bras 2020; 53(2):116-21. doi: 10.1590/0100-3984.2019.0055https://dx.doi.org/10.1590/0100-3984.2019.0055. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000200116&tlng=enhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000200116&tlng=en
Publicity Resources
Related Articles
Related Author
Related Institution