FOLLOWUS
1.Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Beijing 100730, China
3.Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
2.Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
E-mail: wudong@pumch.cn
Received:16 October 2023,
Accepted:2024-02-07,
Published Online:10 April 2024,
Published:30 June 2024
Scan QR Code
闫夏晓,张越伦,张钰佩等.无创肠鸣音分析诊断肠易激综合征的准确性:系统综述和荟萃分析[J].中国医学科学杂志(英文),2024,39(02):122-130.
Yan Xia-Xiao,Zhang Yue-Lun,Zhang Yu-Pei,et al.Diagnostic Accuracy of Computerized Bowel Sound Analysis with Non-Invasive Devices for Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis[J].Chinese Medical Sciences Journal,2024,39(02):122-130.
闫夏晓,张越伦,张钰佩等.无创肠鸣音分析诊断肠易激综合征的准确性:系统综述和荟萃分析[J].中国医学科学杂志(英文),2024,39(02):122-130. DOI: 10.24920/004307.
Yan Xia-Xiao,Zhang Yue-Lun,Zhang Yu-Pei,et al.Diagnostic Accuracy of Computerized Bowel Sound Analysis with Non-Invasive Devices for Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis[J].Chinese Medical Sciences Journal,2024,39(02):122-130. DOI: 10.24920/004307.
目的
2
采用系统回顾和荟萃分析评估肠鸣音分析对肠易激综合征(irritable bowel syndrome,IBS)的诊断准确性。
方法
2
检索MEDLINE,EMBASE,Cochrane Library,Web of Science和IEEE Xplore数据库中有关肠鸣音分析对IBS诊断准确性的横断面和病例对照研究。检索截止时间为2023年9月。计算灵敏度、特异度、阳性似然比、阴性似然比和诊断比值比及95%置信区间(confidence interval,
CI
),并绘制受试者工作特征曲线,计算曲线下面积。
结果
2
共纳入4项研究。肠鸣音分析诊断IBS的灵敏度、特异度、阳性似然比、阴性似然比和诊断比值比分别为0.94(95%
CI
,0.87~0.97),0.89(95%
CI
,0.81~0.94),8.43(95%
CI
,4.81~14.78),0.07(95%
CI
,0.03~0.15)和118.86(95%
CI
,44.18~319.75),曲线下面积为 0.97(95%
CI
,0.95~0.98)。
结论
2
肠鸣音分析是一种诊断IBS的有效工具。然而,由于高质量研究数据有限,结果的真实性和适用性存疑,需要开展更多临床诊断试验,并优化可穿戴设备进行肠鸣音监测和分析。
Objective
2
To assess the diagnostic accuracy of bowel sound analysis for irritable bowel syndrome (IBS) with a systematic review and meta-analysis.
Methods
2
We searched MEDLINE
Embase
the Cochrane Library
Web of Science
and IEEE Xplore databases until September 2023. Cross-sectional and case-control studies on diagnostic accuracy of bowel sound analysis for IBS were identified. We estimated the pooled sensitivity
specificity
positive likelihood ratio
negative likelihood ratio
and diagnostic odds ratio with a 95% confidence interval (
CI
)
and plotted a summary receiver operating characteristic curve and evaluated the area under the curve.
Results
2
Four studies were included. The pooled diagnostic sensitivity
specificity
positive likelihood ratio
negative likelihood ratio
and diagnostic odds ratio were 0.94 (95%
CI
0.87‒0.97)
0.89 (95%
CI
0.81‒0.94)
8.43 (95%
CI
4.81‒1
4.78)
0.07 (95%
CI
0.03‒0.15)
and 118.86 (95%
CI
44.18‒319.75)
respectively
with an area under the curve of 0.97 (95%
CI
0.95‒0.98).
Conclusions
2
Computerized bowel sound analysis is a promising tool for IBS. However
limited high-quality data make the results' validity and applicability questionable. There is a need for more diagnostic test accuracy studies and better wearable devices for monitoring and analysis of IBS.
Drossman DA , Hasler WL . Rome IV-functional GI disorders: disorders of gut-brain interaction . Gastroenterology 2016 ; 150 ( 6 ): 1257 - 61 . doi: 10.1053/j.gastro.2016.03.035 http://dx.doi.org/10.1053/j.gastro.2016.03.035 .
Lovell RM , Ford AC . Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis . Clin Gastroenterol Hepatol 2012 ; 10 ( 7 ): 712 - 21.e4 . doi: 10.1016/j.cgh.2012.02.029 http://dx.doi.org/10.1016/j.cgh.2012.02.029 .
Black CJ , Ford AC . Global burden of irritable bowel syndrome: trends, predictions and risk factors . Nat Rev Gastroenterol Hepatol 2020 ; 17 ( 8 ): 473 - 86 . doi: 10.1038/s41575-020-0286-8 http://dx.doi.org/10.1038/s41575-020-0286-8 .
Mearin F , Lacy BE , Chang L , et al . Bowel disorders . Gastroenterology 2016 ; 150 ( 6 ): 1393 - 407.e5 . doi: 10.1053/j.gastro.2016.02.031 http://dx.doi.org/10.1053/j.gastro.2016.02.031 .
Spiegel BM , Farid M , Esrailian E , et al . Is irritable bowel syndrome a diagnosis of exclusion?: a survey of primary care providers, gastroenterologists, and IBS experts . Am J Gastroenterol 2010 ; 105 ( 4 ): 848 - 58 . doi: 10.1038/ajg.2010.47 http://dx.doi.org/10.1038/ajg.2010.47 .
Ford AC , Lacy BE , Talley NJ . Irritable bowel syndrome . N Engl J Med 2017 ; 376 ( 26 ): 2566 - 78 . doi: 10.1056/NEJMra1607547 http://dx.doi.org/10.1056/NEJMra1607547 .
Palsson OS , Whitehead WE , van Tilburg MA , et al . Development and validation of the Rome IV diagnostic questionnaire for adults . Gastroenterology 2016 ; 150 ( 6 ): 1481 - 91 doi: 10.1053/j.gastro.2016.02.014 http://dx.doi.org/10.1053/j.gastro.2016.02.014 .
O'Connor OJ , McSweeney SE , McWilliams S , et al . Role of radiologic imaging in irritable bowel syndrome: evidence-based review . Radiology 2012 ; 262 ( 2 ): 485 - 94 . doi: 10.1148/radiol.11110423 http://dx.doi.org/10.1148/radiol.11110423 .
Sood R , Gracie DJ , Law GR , et al . Systematic review with meta-analysis: the accuracy of diagnosing irritable bowel syndrome with symptoms, biomarkers and/or psychological markers . Aliment Pharmacol Ther 2015 ; 42 ( 5 ): 491 - 503 . doi: 10.1111/apt.13283 http://dx.doi.org/10.1111/apt.13283 .
Vulpoi RA , Luca M , Ciobanu A , et al . The potential use of artificial intelligence in irritable bowel syndrome management . Diagnostics (Basel) 2023 ; 13 ( 21 ): 3336 . doi: 10.3390/diagnostics13213336 http://dx.doi.org/10.3390/diagnostics13213336 .
Zaborski D , Halczak M , Grzesiak W , et al . Recording and analysis of bowel sounds . Euroasian J Hepatogastroenterol 2015 ; 5 ( 2 ): 67 - 73 . doi: 10.5005/jp-journals-10018-1137 http://dx.doi.org/10.5005/jp-journals-10018-1137 .
Craine BL , Silpa M , O'Toole CJ . Computerized auscultation applied to irritable bowel syndrome . Dig Dis Sci 1999 ; 44 ( 9 ): 1887 - 92 . doi: 10.1023/a:1018859110022 http://dx.doi.org/10.1023/a:1018859110022 .
Craine BL , Silpa ML , O'Toole CJ . Enterotachogram analysis to distinguish irritable bowel syndrome from Crohn's disease . Dig Dis Sci 2001 ; 46 ( 9 ): 1974 - 9 . doi: 10.1023/a:1010651602095 http://dx.doi.org/10.1023/a:1010651602095 .
Du X , Allwood G , Webberley KM , et al . Noninvasive diagnosis of irritable bowel syndrome via bowel sound features: proof of concept . Clin Transl Gastroenterol 2019 ; 10 ( 3 ): e00017 . doi: 10.14309/ctg.0000000000000017 http://dx.doi.org/10.14309/ctg.0000000000000017 .
Du X , Webberley KM , Marshall BJ . Highly seneitive diagnosis of irritable bowel syndrome via non-invasive methods . Gastroenterology 2020 ; 158 ( 6 ): S855 .
Wang F , Wu D , Jin P , et al . A flexible skin-mounted wireless acoustic device for bowel sounds monitoring and evaluation . Science China (Information Sciences) 2019 ; 62 ( 10 ): 171 - 81 .
Salameh JP , Bossuyt PM , McGrath TA , et al . Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist . BMJ 2020 ; 370 : m2632 . doi: 10.1136/bmj.m2632 http://dx.doi.org/10.1136/bmj.m2632 .
Whiting PF , Rutjes AW , Westwood ME , et al . QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies . Ann Intern Med 2011 ; 155 ( 8 ): 529 - 36 . doi: 10.7326/0003-4819-155-8-201110180-00009 http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009 .
Emoto T , Shono K , Abeyratne UR , et al . ARMA-based spectral bandwidth for evaluation of bowel motility by the analysis of bowel sounds . Physiol Meas 2013 ; 34 ( 8 ): 925 - 36 . doi: 10.1088/0967-3334/34/8/925 http://dx.doi.org/10.1088/0967-3334/34/8/925 .
Dimoulas C , Kalliris G , Papanikolaou G , et al . Bowel-sound pattern analysis using wavelets and neural networks with application to long-term, unsupervised, gastrointestinal motility monitoring . Expert Systems Applications 2008 ; 34 ( 1 ): 26 - 41 .
Dimoulas CA . Audiovisual spatial-audio analysis by means of sound localization and imaging: a multimedia healthcare framework in abdominal sound mapping . IEEE Trans Multimedia 2016 ; 18 ( 10 ): 1969 - 76 .
Huang Y , Song I , Rana P , et al . Fast diagnosis of bowel activities . 2017 International Joint Conference on Neural Networks ; 2017 May 14- 19 ; Anchorage, AK, USA. New York : IEEE ; 2017. doi: 10.1109/IJCNN.2017.7966234 http://dx.doi.org/10.1109/IJCNN.2017.7966234 .
Zhao K , Jiang H , Wang Z , et al . Long-term bowel sound monitoring and segmentation by wearable devices and convolutional neural networks . IEEE Trans Biomed Circuits Syst 2020 ; 14 ( 5 ): 985 - 96 . doi: 10.1109/tbcas.2020.3018711 http://dx.doi.org/10.1109/tbcas.2020.3018711 .
Inderjeeth AJ , Webberley KM , Muir J , et al . The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: a systematic review . Syst Rev 2018 ; 7 ( 1 ): 124 . doi: 10.1186/s13643-018-0789-3 http://dx.doi.org/10.1186/s13643-018-0789-3 .
Publicity Resources
Related Articles
Related Author
Related Institution