FOLLOWUS
1.Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
2.Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangzhou 518107, China
3.Department of Traditional Chinese Medicine, HuiYa Hospital of The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 516081, China
E-mail: jshouzhi@163.com
Published:30 September 2024,
Published Online:02 July 2024,
Received:12 December 2023,
Accepted:2024-05-15
Scan QR Code
汪园园,秦鉴,张茹兰等.苓桂术甘汤改善高糖诱导的足细胞的自噬[J]. 中国医学科学杂志(英文),2024,39(03):189-197.
Wang Yuan-Yuan,Qin Jian,Zhang Ru-Lan,et al.Linggui Zhugan Decoction Improves High Glucose-Induced Autophagy in Podocytes[J].Chinese Medical Sciences Journal,2024,39(03):189-197.
汪园园,秦鉴,张茹兰等.苓桂术甘汤改善高糖诱导的足细胞的自噬[J]. 中国医学科学杂志(英文),2024,39(03):189-197. DOI: 10.24920/004330.
Wang Yuan-Yuan,Qin Jian,Zhang Ru-Lan,et al.Linggui Zhugan Decoction Improves High Glucose-Induced Autophagy in Podocytes[J].Chinese Medical Sciences Journal,2024,39(03):189-197. DOI: 10.24920/004330.
目的
2
探讨苓桂术甘汤(Linggui Zhugan Decoction (LGZGD,LGZGD)对高糖诱导的足细胞自噬的影响。
方法
2
分别给SD大鼠胃内灌注4.2 g·kg
-1
(低剂量)、8.4 g·kg
-1
(中剂量)和12.6 g·kg
-1
(高剂量)LGZGD,制备含血清LGZGD。用60 mmol/L葡萄糖分别处理足细胞MPC5和AB8/13,在体外建立糖尿病肾病足细胞模型。将足细胞分为对照组、高糖组、低剂量LGZGD组、中剂量LGZGD组、高剂量LGZGD组。对于3个LGZGD组,在LGZGD干预前,先用60 mmol/L葡萄糖处理足细胞3天。在含LGZGD的血清处理后,收集细胞,用Transwell法分析细胞迁移情况,用CCK8法分析细胞增殖情况,用流式细胞术分析细胞凋亡和细胞周期,用透射电镜分析自噬体的形成,用western blot分析Beclin-1、Atg5、LC3II/I和P62蛋白的表达水平。
结果
2
与对照组相比,高糖组MPC5和AB8.13细胞的增殖和迁移能力略有下降,而在低、中浓度LGZGD干预后,这些指标均恢复正常,以中剂量LGZGD的效果最好。流式细胞术分析显示,与高剂量组比较,中剂量LGZGD组的细胞凋亡率较低(
P
<
0.05),存活率较高(
P
>
0.05)。高糖使足细胞阻滞在G1期,而LGZGD则使足细胞从G1期进入G2期。高剂量LGZGD显著降低了足细胞因高糖作用而增加的自噬体形成(
P
<
0.05)。Western blot分析显示,高糖处理的MPC5细胞中Beclin-1、Atg5、LC3Ⅱ/Ⅰ和P62表达增加,而给予低剂量和中剂量的LGZGD后,这些蛋白的表达被逆转(
P
<
0.05)。
结论
2
LGZGD通过调节Beclin-1/LC3II/I/Atg5的表达,减少了高糖处理的足细胞的凋亡,并增加了细胞自噬。
Objective
2
To explore the influence of Linggui Zhugan Decoction (LGZGD) on high glucose induced podocyte autophagy.
Methods
2
LGZGD containing serum was prepared by intragastric administation of 4.2 g/kg (low dose)
8.4 g/kg (medium dose)
and 12.6 g/kg (high dose) LGZGD into SD rats respectively. MPC5 and AB8/13 podocyte cells were treated with 60 mmol/L glucose to establish diabetic nephropathy podocyte model
in vitro
. Both podocytes were divided into control group
high glucose group
low dose LGZGD group
medium dose LGZGD group
and high dose LGZGD group
respectively. For the three LGZGD groups
before LGZGD intervention
podocytes were treated with 60 mmol/L glucose for 3 days. After treated with LGZGD containing serum
cells were collected to analyze cell migration using Transwell assay
proliferation using CCK8
apoptosis and cell cycle using flow cytometry
autophagosome formation using transmission electron microscopy
and expression levels of Beclin-1
Atg5
LC3II/I
and P62 proteins using Western blot.
Results
2
Compared with the control group
the proliferation and migration of MPC5 and AB8/13 cells in the high glucose group slightly decreased
whereas these parameters restored after intervention with low and medium concentrations of LGZGD
with the medium dose LGZGD having the better effect (
P
<
0.05). Flow cytometry showed that the medium dose LGZGD group had a significantly lower apoptosis rate (
P
<
0.05) and higher survival rate (
P
>
0.05) compared to the high dose LGZGD group. High glucose arrested podocytes in G1 phase
whereas LGZGD shifted podocytes from being predominant in G1 phase to G2 phase. High dose LGZGD significanly reduced high glucose-increased autophagosome formation in both podocytes (
P
<
0.05). Western blot analysis showed
that Beclin-1
Atg5
LC3II/I
and P62 expressions were increased in MPC5 cells treated with high glucose and reversed after adminstration of low and medium doses of LGZGD (
P
<
0.05).
Conclusion
2
LGZGD reduced apoptosis and enhanced autophagy in high glucose treated podocytes
via
regulating Beclin-1/LC3II/I/Atg5 expression.
糖尿病肾病足细胞苓桂术甘汤凋亡自噬
diabetic nephropathypodocyteLinggui Zhugan decoctionapoptosisautophagy
Yu M, Kim YJ, Kang DH, et al. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol 2011; 6(Pt1):30-9. doi:10.2215/CJN.05340610http://dx.doi.org/10.2215/CJN.05340610.
Roy S, Melana Y, Renu N, et al. Plasma trimethylamine-N-oxide and impaired glucose regulation: results from the oral infections, glucose intolerance and insulin resistance study (ORIGINS). PLOS ONE 2020; 1(Pt15):1-10. doi: 10.1371 /journal.pone.0227482http://dx.doi.org/10.1371/journal.pone.0227482.
Ceccarell D, Palearir, Solerte B, et al. Re-thinking diabetic nephropathy: microalbuminuria is just a piece of the diagnostic puzzle. Clin Chim Acta 2022; 524(Pt10):146-53. doi: 10.1016/j.cca.2021.11.009http://dx.doi.org/10.1016/j.cca.2021.11.009.
Song XY, Sun XM, Sungwhan F, et al. Microbial bile acid metabolites modulate gut RORγ regulatory T cell homeostasis. Nature 2020; 5(Pt77):410-5. doi: 10.1038/ s41586-019-1865-0http://dx.doi.org/10.1038/s41586-019-1865-0.
Chi YF, Liu S, Wang H, et al. Effect of Huangqi decoction on proteinuria and related inflammatory factors expression of patients with diabetic kidney disease Ⅲ . Chin J Integr Tradit West Nephrol 2020; 21(Pt4):305-8.
Wang YY, Jin MH, Zhang LN, et al. Effect of a combination of calorie-restriction therapy and Lingguizhugan decoction on levels of fasting blood lipid and inflammatory cytokines in a high-fat diet induced hyperlipidemia rat model. J Tradit Chin Med 2015; 35(Pt2):218-21. doi: 10.1016/S0254-6272(15)30031-5http://dx.doi.org/10.1016/S0254-6272(15)30031-5.
Shi L, Ke B, Wang YY, et al. Effects of modified Linggui Zhugan decoction combined with food restriction on PI3K/Akt/mTOR pathway in hippocampus of rats with spleen-deficiency and phlegm-dampness type diabetic encephalopathy. Chin Materia Medica 2018; 1(Pt41):1191-6. doi: 10.1007/s11655-020-3285-2http://dx.doi.org/10.1007/s11655-020-3285-2.
Wang YY, Jin MH, Huang YJ, et al. Effects of Linggui Zhugan decoction combined with caloric restriction on skin lesions in rats with eczema and its mechanism. Chin J Integr Tradit Chin West Med 2020; 5(Pt40):465-9. doi: 10.7661/j.cjim.20190928.286http://dx.doi.org/10.7661/j.cjim.20190928.286.
Wang YY, Jin MH, Ke B, et al. Effects of Linggui Zhugan decoction combined with caloric restriction on insulin resistance in rats and its mechanism. Chin J Integr Tradit Chin West Med 2013; 33(Pt3):356-60.
Ke B, Shi L, Zhang JJ, et al. Clinical study of modified Linggui Zhugan decoction combined with short-term fasting in the treatment of obesity complicated with hypertension. Chin Sci Technol Tradit Chin Med 2012; 4(Pt19):399-400.
Yang YB , Wang YL, Sun ZB, et al. Effect of Linggui Zhugan decoction in activating fat mobilization in obesity. J Holistic Integr Pharmacy 2022; 3(Pt1):68-81. doi: 10.1016/S2707-3688(23)00067-5http://dx.doi.org/10.1016/S2707-3688(23)00067-5.
Chen L, Cheng TY, Zhang BB, et al. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Renal Failure 2023; 45 (Pt9):1-17. doi: 10.1080/0886022X. 2023.2165103http://dx.doi.org/10.1080/0886022X.2023.2165103.
Guo HH, Rogg M, Keller J, et al. ADP-ribosylation factor-interacting protein 2 acts as a novel regulator of mitophagy and autophagy in podocytes in diabetic nephropathy. Antioxidants 2024; 13(Pt1):12-6. doi: 10.3390/antiox 13010081http://dx.doi.org/10.3390/antiox13010081.
ElHini SH, Mohamed HE, Saedii AA, et al. Study of risk factors of diabetic foot and role of hypoxia-inducible factor I alpha in Egyptian type 2 diabetic patients. Egyptian J Hospital Med 2023; 1(Pt90): 837-42. doi: 10.21608/ejhm.2023.279947http://dx.doi.org/10.21608/ejhm.2023.279947.
Liu MT, Huang YJ, Qin J, et al. Inhibition of MAPKs signaling pathways prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmaceutical Society Japan 2019; 4(Pt42):617-20. doi: 10.1248/bpb.b18 -00715http://dx.doi.org/10.1248/bpb.b18-00715.
Ke B, Shi L, Zhang JJ, et al. Clinical study of modified Linggui Zhugan decoction combined with short-term fasting in the treatment of obese patients with impaired glucose tolerance. Chin Materia Medica 2012; 5(Pt35):843-5.
Yang XY, Chang BC, Han F, et al. Dynamic changes of taurobile acid levels during the development of type 2 diabetes in OLETF rat. Chin J Endocrinol Metabolism 2017; 5(Pt33):590-5.
Abd EH, Abeer M, Saudi A, et al. Polydatin-loaded chitosan nanoparticles ameliorate early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat. J Diabetes Metabolic Disorders 2020; 19(Pt2):1599-607. doi: 10.1007/s40200-020-00699-7http://dx.doi.org/10.1007/s40200-020-00699-7.
Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018; 9(Pt23):32-7. doi: 10.1111/nep.13451http://dx.doi.org/10.1111/nep.13451.
Putra IMWA, Fakhrudin N, Nurrochmad A, et al. A review of medicinal plants with renoprotective activity in diabetic nephropathy animal models. Life (Basel) 2023; 5(Pt13):560. doi: 10.3390/life13020560http://dx.doi.org/10.3390/life13020560.
Sun JP, Shi L, Wang YY, et al. Modified Linggui Zhugan decoction ameliorates glycolipid metabolism and inflammation via PI3K-Akt /mTOR-S6K1/AMPK-PGC-1 [alpha] signaling pathways in obese type 2 diabetic rats. Chin J Integr Med 2022; 28(Pt1):52-6. doi: 10.1007/s11655-020-3285-2http://dx.doi.org/10.1007/s11655-020-3285-2.
Publicity Resources
Related Articles
Related Author
Related Institution