FOLLOWUS
1.Department of Clinical Medicine, Bengbu Medical University, Bengbu 233030, Anhui, China
3.Department of Human Anatomy, Bengbu Medical University, Bengbu 233030, Anhui, China
4.Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical University, Bengbu 233030, Anhui, China
2.Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu 233030, Anhui, China
E-mail: zhxww@foxmail.com
Received:04 March 2024,
Accepted:2024-04-18,
Published Online:18 June 2024,
Published:30 June 2024
Scan QR Code
马俊杰,张磊,陆进等.PPP1R14A基因与头颈鳞状细胞癌免疫治疗耐药相关:综合分析单细胞和批量测序结果[J].中国医学科学杂志(英文),2024,39(02):111-121.
Ma Jun-Jie,Zhang Lei,Lu Jin,et al.PPP1R14A is Associated with Immunotherapy Resistance in Head and Neck Squamous Cell Carcinoma Identified by Single-Cell and Bulk RNA-Sequencing[J].Chinese Medical Sciences Journal,2024,39(02):111-121.
马俊杰,张磊,陆进等.PPP1R14A基因与头颈鳞状细胞癌免疫治疗耐药相关:综合分析单细胞和批量测序结果[J].中国医学科学杂志(英文),2024,39(02):111-121. DOI: 10.24920/004354.
Ma Jun-Jie,Zhang Lei,Lu Jin,et al.PPP1R14A is Associated with Immunotherapy Resistance in Head and Neck Squamous Cell Carcinoma Identified by Single-Cell and Bulk RNA-Sequencing[J].Chinese Medical Sciences Journal,2024,39(02):111-121. DOI: 10.24920/004354.
目的
2
分析接受纳武利尤单抗治疗的头颈鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)患者的单细胞和批量RNA测序数据,发现与耐药相关的基因。
方法
2
下载基因表达总库(the Gene Expression Omnibus database,GEO)数据库中接受纳武利尤单抗治疗HNSCC患者的单细胞和批量RNA测序数据,采用R软件筛选在耐药患者和药物敏感患者之间的差异表达基因(differentially expressed genes,DEGs)。采用最小绝对收缩和选择算法(The Least Absolute Shrinkage Selection Operator,LASSO)和递归特征消除(Recursive Feature Elimination,RFE)算法,鉴别与耐药相关的关键基因。利用基因本体和京都基因组百科全书分析DEGs的功能富集。之后,研究关键基因表达与免疫细胞浸润、细胞分化轨迹、动态基因表达谱以及配体-受体相互作用的关系。
结果
2
我们共发现83个DEGs。它们主要富集在T细胞分化、
PD-1
和
PD-L1
检查点通路以及T细胞受体等通路中。在机器学习方法筛选出的6个关键基因中,仅
PPP1R14A
基因表达在耐药组与药物敏感组的差异有统计学意义,这种现象既存在于治疗前,也存在于治疗后(
P
<
0.05)。
PPP1R14A
基因高表达组的免疫得分较低(
P
<
0.01)、高免疫抑制因子表达较高(如
PDCD1
、
CTLA4
和
PDCD1LG2
等)(R
>
0,
P
<
0.05)、免疫细胞浸润水平较低,
HLA
与
CD4
的相互作用程度较高(
P
<
0.05)。
结论
2
PPP1R14A
基因与HNSCC患者对纳武利尤单抗耐药性相关。因此,
PPP1R14A
基因可能是改善HNSCC患者纳武利尤单抗耐药性的靶点。
Objective
2
To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma (HNSCC) using single-cell and bulk RNA-sequencing data.
Methods
2
The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus database were analyzed to screen out differentially expressed genes (DEGs) between nivolumab resistant and nivolumab sensitive patients using R software. The Least Absolute Shrinkage Selection Operator (LASSO) regression and Recursive Feature Elimination (RFE) algorithm were performed to identify key genes associated with nivolumab resistance. Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The relationships of key genes with immune cell infiltration
differentation trajectory
dynamic gene expression profiles
and ligand-receptor interaction were explored.
Results
2
We found 83 DEGs. They were mainly enriched in T-cell differentiation
PD-1 and PD-L1 checkpoint
and T-cell receptor pathways. Among six key genes identified using machine learning algorithms
only
PPP1R14A
gene was differentially expressed between the nivolumab
resistant and nivolumab sensitive groups both before and after immunotherapy (
P
<
0.05). The high
PPP1R14A
gene expression group had lower immune score (
P
<
0.01)
higher expression of immunosuppressive factors (such as
PDCD1
CTLA4
and
PDCD1LG2
) (
r
>
0
P
<
0.05)
lower differentiation of infiltrated immune cells (
P
<
0.05)
and a higher degree of interaction between HLA and CD4 (
P
<
0.05).
Conclusions
2
PPP1R14A
gene is closely associated with resistance to nivolumab in HNSCC patients. Therefore
PPP1R14A
may be a target to ameliorate nivolumab resistance of HNSCC patients.
Zhao X , Mai Z , Liu L , et al . Hypoxia-driven TNS4 fosters HNSCC tumorigenesis by stabilizing integrin α5β1 complex and triggering FAK-mediated Akt and TGFβ signaling pathways . Int J Biol Sci 2024 ; 20 ( 1 ): 231 - 48 . doi: 10.7150/ijbs.86317 http://dx.doi.org/10.7150/ijbs.86317 .
Guo X , Xu L , Nie L , et al . B cells in head and neck squamous cell carcinoma: current opinion and novel therapy . Cancer Cell Int 2024 ; 24 ( 1 ): 41 . doi: 10.1186/s12935-024-03218-3 http://dx.doi.org/10.1186/s12935-024-03218-3 .
Mathan SV , Singh R , Kim SH , et al . Diallyl trisulfide induces ROS-mediated mitotic arrest and apoptosis and inhibits HNSCC tumor growth and cancer stemness . Cancers (Basel) 2024 ; 16 ( 2 ): 378 . doi: 10.3390/cancers16020378 http://dx.doi.org/10.3390/cancers16020378 .
Liu S , Wang R , Fang J . Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma . Discov Oncol 2024 ; 15 ( 1 ): 22 , doi: 10.1007/s12672-024-00870-z http://dx.doi.org/10.1007/s12672-024-00870-z .
Gong X , Xiong J , Gong Y , et al . Deciphering the role of HPV-mediated metabolic regulation in shaping the tumor microenvironment and its implications for immunotherapy in HNSCC . Front Immunol 2023 ; 14 : 1275270 . doi: 10.3389/fimmu.2023.1275270 http://dx.doi.org/10.3389/fimmu.2023.1275270 .
Li C , Guo H , Zhai P , et al . Spatial and single-cell transcriptomics reveal a cancer-associated fibroblast subset in HNSCC that restricts infiltration and antitumor activity of CD8+ T cells . Cancer Res 2024 ; 84 ( 2 ): 258 - 75 . doi: 10.1158/0008-5472.Can-23-1448 http://dx.doi.org/10.1158/0008-5472.Can-23-1448 .
Han X , Zhang H , Sun K , et al . Durvalumab with or without tremelimumab for patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a systematic review and meta-analysis . Front Immunol 2023 ; 14 : 1302840 . doi: 10.3389/fimmu.2023.1302840 http://dx.doi.org/10.3389/fimmu.2023.1302840 .
Ritchie ME , Phipson B , Wu D , et al . limma powers differential expression analyses for RNA-sequencing and microarray studies . Nucleic Acids Res 2015 ; 43 ( 7 ): e47 . doi: 10.1093/nar/gkv007 http://dx.doi.org/10.1093/nar/gkv007 .
Stuart T , Butler A , Hoffman P , et al . Comprehensive integration of single-cell data . Cell 2019 ; 177 ( 7 ): 1888 - 902.e21 . doi: 10.1016/j.cell. 2019.05.031 http://dx.doi.org/10.1016/j.cell.2019.05.031 .
Andreatta M , Carmona SJ . UCell: robust and scalable single-cell gene signature scoring . Comput Struct Biotechnol J 2021 ; 19 : 3796 - 8 . doi: 10.1016/j.csbj.2021.06.043 http://dx.doi.org/10.1016/j.csbj.2021.06.043 .
Wu T , Hu E , Xu S , et al . clusterProfiler 4.0: a universal enrichment tool for interpreting omics data . Innovation (Camb) 2021 ; 2 ( 3 ): 100141 . doi: 10.1016/j.xinn.2021.100141 http://dx.doi.org/10.1016/j.xinn.2021.100141 .
Subramanian A , Tamayo P , Mootha VK , et al . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles . Proc Natl Acad Sci USA 2005 ; 102 ( 43 ): 15545 - 50 . doi: 10.1073/pnas.0506580102 http://dx.doi.org/10.1073/pnas.0506580102 .
Hänzelmann S , Castelo R , Guinney J . GSVA: gene set variation analysis for microarray and RNA-seq data . BMC Bioinformatics 2013 ; 14 : 7 . doi: 10.1186/1471-2105-14-7 http://dx.doi.org/10.1186/1471-2105-14-7 .
Tibshirani R . Regression shrinkage and selection via the Lasso . J Royal Statistical Society : Series B (Methodological) 1996 ; 58 ( 1 ): 267 - 88 .
Han Y , Huang L , Zhou F . A dynamic recursive feature elimination framework (dRFE) to further refine a set of OMIC biomarkers . Bioinformatics 2021 ; 37 ( 15 ): 2183 - 9 . doi: 10.1093/bioinformatics/btab055 http://dx.doi.org/10.1093/bioinformatics/btab055 .
Newman AM , Liu CL , Green MR , et al . Robust enumeration of cell subsets from tissue expression profiles . Nat Methods 2015 ; 12 ( 5 ): 453 - 7 . doi: 10.1038/nmeth.3337 http://dx.doi.org/10.1038/nmeth.3337 .
Yoshihara K , Shahmoradgoli M , Martínez E , et al . Inferring tumour purity and stromal and immune cell admixture from expression data . Nat Commun 2013 ; 4 : 2612 . doi: 10.1038/ncomms3612 http://dx.doi.org/10.1038/ncomms3612 .
Gulati GS , Sikandar SS , Wesche DJ , et al . Single-cell transcriptional diversity is a hallmark of developmental potential . Science 2020 ; 367 ( 6476 ): 405 - 11 . doi: 10.1126/science.aax0249 http://dx.doi.org/10.1126/science.aax0249 .
Cao J , Spielmann M , Qiu X , et al . The single-cell transcriptional landscape of mammalian organogenesis . Nature 2019 ; 566 ( 7745 ): 496 - 502 . doi: 10.1038/s41586-019-0969-x http://dx.doi.org/10.1038/s41586-019-0969-x .
Lai Y , Lu X , Liao Y , et al . Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions . Genes Dis 2024 ; 11 ( 2 ): 874 - 89 . doi: 10. 1016/j.gendis.2023.05.025 http://dx.doi.org/10.1016/j.gendis.2023.05.025 .
Jin S , Guerrero-Juarez CF , Zhang L , et al . Inference and analysis of cell-cell communication using CellChat . Nat Commun 2021 ; 12 ( 1 ): 1088 . doi: 10.1038/s41467-021-21246-9 http://dx.doi.org/10.1038/s41467-021-21246-9 .
Maeser D , Gruener RF , Huang RS . oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data . Brief Bioinform 2021 ; 22 (6):bbab260. doi: 10.1093/bib/bbab260 http://dx.doi.org/10.1093/bib/bbab260 .
Fustero-Torre C , Jiménez-Santos MJ , García-Martín S , et al . Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data . Genome Med 2021 ; 13 ( 1 ): 187 . doi: 10.1186/s13073-021-01001-x http://dx.doi.org/10.1186/s13073-021-01001-x .
Fu J , Li K , Zhang W , et al . Large-scale public data reuse to model immunotherapy response and resistance . Genome Med 2020 ; 12 ( 1 ): 21 . doi: 10.1186/s13073-020-0721-z http://dx.doi.org/10.1186/s13073-020-0721-z .
Zhao X , Guo B , Sun W , et al . Targeting squalene epoxidase confers metabolic vulnerability and overcomes chemoresistance in HNSCC . Adv Sci (Weinh) 2023 ; 10 ( 27 ): e2206878 . doi: 10.1002/advs.202206878 http://dx.doi.org/10.1002/advs.202206878 .
Guo Y , Nakashima T , Cho BC , et al . Clinical decision pathway and management of locally advanced head and neck squamous cell carcinoma: a multidisciplinary consensus in Asia-Pacific . Oral Oncol 2024 ; 148 : 106657 . doi: 10.1016/j.oraloncology.2023.106657 http://dx.doi.org/10.1016/j.oraloncology.2023.106657 .
Runnels J , Bloom JR , Hsieh K , et al . Combining radiotherapy and immunotherapy in head and neck cancer . Biomedicines 2023 ; 11 ( 8 ): 2097 . doi: 10.3390/biomedicines11082097 http://dx.doi.org/10.3390/biomedicines11082097 .
Zhang J , Joshua AM , Li Y , et al . Targeted therapy, immunotherapy, and small molecules and peptidomimetics as emerging immunoregulatory agents for melanoma . Cancer Lett 2024 ; 586 : 216633 . doi: 10.1016/j.canlet.2024.216633 http://dx.doi.org/10.1016/j.canlet.2024.216633 .
Yin J , Gu T , Chaudhry N , et al . Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications . Front Immunol 2023 ; 14 : 1325615 . doi: 10.3389/fimmu.2023.1325615 http://dx.doi.org/10.3389/fimmu.2023.1325615 .
Iwasa YI , Nakajima T , Hori K , et al . A spatial transcriptome reveals changes in tumor and tumor microenvironment in oral cancer with acquired resistance to immunotherapy . Biomolecules 2023 ; 13 ( 12 ): 1685 . doi: 10.3390/biom13121685 http://dx.doi.org/10.3390/biom13121685 .
Meliante PG , Zoccali F , de Vincentiis M , et al . Diagnostic predictors of immunotherapy response in head and neck squamous cell carcinoma . Diagnostics (Basel) 2023 ; 13 ( 5 ): 862 . doi: 10.3390/diagnostics13050862 http://dx.doi.org/10.3390/diagnostics13050862 .
Wei F , Fang R , Lyu K , et al . Exosomal PD-L1 derived from head and neck squamous cell carcinoma promotes immune evasion by activating the positive feedback loop of activated regulatory T cell-M2 macrophage . Oral Oncol 2023 ; 145 : 106532 . doi: 10.1016/j.oraloncology.2023.106532 http://dx.doi.org/10.1016/j.oraloncology.2023.106532 .
Jin Y , Qin X . Profiles of immune cell infiltration and their clinical significance in head and neck squamous cell carcinoma . Int Immunopharmacol 2020 ; 82 : 106364 . doi: 10.1016/j.intimp.2020.106364 http://dx.doi.org/10.1016/j.intimp.2020.106364 .
Bao J , Betzler AC , Hess J , et al . Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma . Front Immunol 2023 ; 14 : 1233085 . doi: 10.3389/fimmu.2023.1233085 http://dx.doi.org/10.3389/fimmu.2023.1233085 .
Stelzer G , Rosen N , Plaschkes I , et al . The GeneCards suite: from gene data mining to disease genome sequence analyses . Curr Protoc Bioinformatics 2016 ; 54 :1.30. 1 - 1 .30.33. doi: 10.1002/cpbi.5 http://dx.doi.org/10.1002/cpbi.5 .
Thul PJ , Akesson L , Wiking M , et al . A subcellular map of the human proteome . Science 2017 ; 356 (6340):eaal3321. doi: 10.1126/science.aal3321 http://dx.doi.org/10.1126/science.aal3321 .
Wang Z , Huang R , Wang H , et al . Prognostic and immunological role of PPP1R14A as a Pan-cancer analysis candidate . Front Genet 2022 ; 13 : 842975 . doi: 10.3389/fgene.2022.842975 http://dx.doi.org/10.3389/fgene.2022.842975 .
Tian Y , Soupir A , Liu Q , et al . Novel role of prostate cancer risk variant rs7247241 on PPP1R14A isoform transition through allelic TF binding and CpG methylation . Hum Mol Genet 2022 ; 31 ( 10 ): 1610 - 21 . doi: 10.1093/hmg/ddab347 http://dx.doi.org/10.1093/hmg/ddab347 .
Liu L , Zhu H , Wang P , et al . Construction of a six-gene prognostic risk model related to hypoxia and angiogenesis for cervical cancer . Front Genet 2022 ; 13 : 923263 . doi: 10.3389/fgene.2022.923263 http://dx.doi.org/10.3389/fgene.2022.923263 .
Yu QS , Feng WQ , Shi LL , et al . Integrated analysis of cortex single-cell transcriptome and serum proteome reveals the novel biomarkers in Alzheimer's disease . Brain Sci 2022 ; 12 ( 8 ): 1022 . doi: 10.3390/brainsci12081022 http://dx.doi.org/10.3390/brainsci12081022 .
Zou W , Green DR . Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy . Cell Metab 2023 ; 35 ( 7 ): 1101 - 13 . doi: 10.1016/j.cmet.2023.06.003 http://dx.doi.org/10.1016/j.cmet.2023.06.003 .
Liu N , Yan M , Tao Q , et al . Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis . J Immunother Cancer 2023 ; 11 ( 9 ): e007146 . doi: 10.1136/jitc-2023-007146 http://dx.doi.org/10.1136/jitc-2023-007146 .
Yang L , Chu Z , Liu M , et al . Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy . J Hematol Oncol 2023 ; 16 ( 1 ): 59 . doi: 10.1186/s13045-023-01453-1 http://dx.doi.org/10.1186/s13045-023-01453-1 .
Liu Y , Li S , Wang S , et al . LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma . Int J Oral Sci 2023 ; 15 ( 1 ): 24 . doi: 10.1038/s41368-023-00229-0 http://dx.doi.org/10.1038/s41368-023-00229-0 .
Swiecicki PL , Spector M , Worden FP . Axitinib in the treatment of head and neck malignancies . Curr Clin Pharmacol 2016 ; 11 ( 2 ): 72 - 6 . doi: 10.2174/1574884711666160518120622 http://dx.doi.org/10.2174/1574884711666160518120622 .
Swiecicki PL , Bellile EL , Brummel CV , et al . Efficacy of axitinib in metastatic head and neck cancer with novel radiographic response criteria . Cancer 2021 ; 127 ( 2 ): 219 - 28 . doi: 10.1002/cncr.33226 http://dx.doi.org/10.1002/cncr.33226 .
Publicity Resources
Related Articles
Related Author
Related Institution