FOLLOWUS
Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
E-mail: liumeilin@hotmail.com.
Published:30 September 2024,
Published Online:04 September 2024,
Received:18 April 2024,
Accepted:2024-06-28
Scan QR Code
刘雯雯,刘梅林.治疗血管钙化的良方何觅[J]. 中国医学科学杂志(英文),2024,39(03):198-210.
Liu Wen-Wen,Liu Mei-Lin.Vascular Calcification: Where is the Cure?[J].Chinese Medical Sciences Journal,2024,39(03):198-210.
刘雯雯,刘梅林.治疗血管钙化的良方何觅[J]. 中国医学科学杂志(英文),2024,39(03):198-210. DOI: 10.24920/004367.
Liu Wen-Wen,Liu Mei-Lin.Vascular Calcification: Where is the Cure?[J].Chinese Medical Sciences Journal,2024,39(03):198-210. DOI: 10.24920/004367.
随着年龄的增长,血管钙化(vascular calcification, VC)的发病率逐渐升高,导致相关心血管事件和全因死亡增加,加重了全球临床负担。在过去的几十年里,针对VC发病机制的陆续研究为VC的治疗提供了一些可能性。然而,目前的干预手段都未能在逆转或治愈VC方面取得肯定的临床效果。本文旨在总结干预VC的新发现,为临床治疗提供参考。
With the progress of aging
the incidence of vascular calcification (VC) gradually increases
which is correlated with cardiovascular events and all-cause death
aggravating global clinical burden. Over the past several decades
accumulating approaches targeting the underlying pathogenesis of VC have provided some possibilities for the treatment of VC. Unfortunately
none of the current interventions have achieved clinical effectiveness on reversing or curing VC. The purpose of this review is to make a summary of novel perspectives on the interventions of VC and provide reference for clinical decision-making.
血管钙化临床病理生理学治疗策略新发现
vascular calcificationclinicalpathophysiologytherapeutic strategiesnovel findings
Chen J, Budoff MJ, Reilly MP, et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol 2017; 2(6): 635-43. doi: 10.1001/jamacardio.2017.0363http://dx.doi.org/10.1001/jamacardio.2017.0363.
Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014; 83(6): E212-20. doi: 10.1002/ccd.25387http://dx.doi.org/10.1002/ccd.25387.
Nigwekar SU, Thadhani R, Brandenburg VM. Calciphylaxis. N Engl J Med 2018; 378(18):1704-14. doi: 10.1056/NEJMra1505292http://dx.doi.org/10.1056/NEJMra1505292.
Shen G, Huang R, Liu B, Kuang A. Sodium thiosulfate in the treatment of lung and breast calciphylaxis: CT and bone scintigraphy findings. Clin Nucl Med 2017; 42(11):893-5. doi: 10.1097/RLU.0000000000001837http://dx.doi.org/10.1097/RLU.0000000000001837.
Kang SJW, Madhan K. Gastrointestinal manifestations in a patient with calciphylaxis: A case report. Case Rep Nephrol Dial 2019; 9(2):119-25. doi: 10.1159/000502436http://dx.doi.org/10.1159/000502436.
Lahtinen AM, Havulinna AS, Jula A, et al. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 2015; 238(1):64-9. doi: 10.1016/j.atherosclerosis.2014.11.015http://dx.doi.org/10.1016/j.atherosclerosis.2014.11.015.
Wang J, Zhou JJ, Robertson GR, et al. Vitamin D in vascular calcification: a double-edged sword? Nutrients 2018; 10(5). doi: 10.3390/nu10050652http://dx.doi.org/10.3390/nu10050652.
Shobeiri N, Adams MA, Holden RM. Vascular calcification in animal models of CKD: a review. Am J Nephrol 2010; 31(6):471-81. doi: 10.1159/000299794http://dx.doi.org/10.1159/000299794.
Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res 2014; 114(2):379-93. doi: 10.1161/CIRCRESAHA.113.301241http://dx.doi.org/10.1161/CIRCRESAHA.113.301241.
Shroff R, Egerton M, Bridel M, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol 2008; 19(6):1239-46. doi:10.1681/ASN.2007090993http://dx.doi.org/10.1681/ASN.2007090993.
Shioi A, Morioka T, Shoji T, et al. The inhibitory roles of vitamin K in progression of vascular calcification. Nutrients 2020; 12(2). doi: 10.3390/nu12020583http://dx.doi.org/10.3390/nu12020583.
Halder M, Petsophonsakul P, Akbulut AC, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci 2019; 20(4). doi: 10.3390/ijms20040896http://dx.doi.org/10.3390/ijms20040896.
Wen L, Chen J, Duan L, et al. Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 2018; 18(1):3-15. doi: 10.3892/mmr.2018.8940http://dx.doi.org/10.3892/mmr.2018.8940.
Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989; 69(3):990-1047. doi: 10.1152/physrev.1989.69.3.990http://dx.doi.org/10.1152/physrev.1989.69.3.990.
Azuma K, Inoue S. Multiple modes of vitamin K actions in aging-related musculoskeletal disorders. Int J Mol Sci 2019; 20(11). doi: 10.3390/ijms20112844http://dx.doi.org/10.3390/ijms20112844.
Viegas CS, Herfs M, Rafael MS, et al. Gla-rich protein is a potential new vitamin K target in cancer: evidences for a direct GRP-mineral interaction. Biomed Res Int 2014; 2014:340216. doi: 10.1155/2014/340216http://dx.doi.org/10.1155/2014/340216.
Pan MH, Maresz K, Lee PS, et al. Inhibition of TNF-alpha, IL-1alpha, and IL-1beta by pretreatment of human monocyte-derived macrophages with menaquinone-7 and cell activation with TLR agonists in vitro. J Med Food 2016; 19(7):663-9. doi: 10.1089/jmf.2016.0030http://dx.doi.org/10.1089/jmf.2016.0030.
Shea MK, Booth SL, Massaro JM, et al. Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring Study. Am J Epidemiol 2008; 167(3):313-20. doi: 10.1093/aje/kwm306http://dx.doi.org/10.1093/aje/kwm306.
Shea MK, Dallal GE, Dawson-Hughes B, et al. Vitamin K, circulating cytokines, and bone mineral density in older men and women. Am J Clin Nutr 2008; 88(2):356-63. doi: 10.1093/ajcn/88.2.356http://dx.doi.org/10.1093/ajcn/88.2.356.
Diederichsen ACP, Lindholt JS, Moller S, et al. Vitamin K2 and D in patients with aortic valve calcification: a randomized double-blinded clinical trial. Circulation 2022; 145(18):1387-97. doi: 10.1161/CIRCULATIONAHA.121.057008http://dx.doi.org/10.1161/CIRCULATIONAHA.121.057008.
Lees JS, Rankin AJ, Gillis KA, et al. The ViKTORIES trial: a randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. Am J Transplant 2021; 21(10):3356-68. doi: 10.1111/ajt.16566http://dx.doi.org/10.1111/ajt.16566.
Ivanovski O, Szumilak D, Nguyen-Khoa T, et al. Effect of simvastatin in apolipoprotein E-deficient mice with surgically induced chronic renal failure. J Urol 2008; 179(4):1631-36. doi: 10.1016/j.juro.2007.11.042http://dx.doi.org/10.1016/j.juro.2007.11.042.
Afonso P, Auclair M, Boccara F, et al. LMNA mutations resulting in lipodystrophy and HIV protease inhibitors trigger vascular smooth muscle cell senescence and calcification: role of ZMPSTE24 downregulation. Atherosclerosis 2016; 245:200-11. doi: 10.1016/j.atherosclerosis.2015.12.012http://dx.doi.org/10.1016/j.atherosclerosis.2015.12.012.
Healy A, Berus JM, Christensen JL, et al. Statins disrupt macrophage rac1 regulation leading to increased atherosclerotic plaque calcification. Arterioscler Thromb Vasc Biol 2020; 40(3):714-32. doi: 10.1161/ATVBAHA.119.313832http://dx.doi.org/10.1161/ATVBAHA.119.313832.
Son BK, Kozaki K, Iijima K, et al. Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur J Pharmacol 2007; 556(1-3):1-8. doi: 10.1016/j.ejphar.2006.09.070http://dx.doi.org/10.1016/j.ejphar.2006.09.070.
Qiu C, Zheng H, Tao H, et al. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol Cell Biochem 2017; 433(1-2):149-59. doi: 10.1007/s11010-017-3023-zhttp://dx.doi.org/10.1007/s11010-017-3023-z.
Dykun I, Lehmann N, Kalsch H, et al. Statin medication enhances progression of coronary artery calcification: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 2016; 68(19):2123-5. doi: 10.1016/j.jacc.2016.08.040http://dx.doi.org/10.1016/j.jacc.2016.08.040.
Vogel LH, Dykun I, Raggi P, et al. High- vs. low-intensity statin therapy and changes in coronary artery calcification density after one year. J Clin Med 2023; 12(2). doi: 10.3390/jcm12020476http://dx.doi.org/10.3390/jcm12020476.
Hur DJ, Raymond GV, Kahler SG, et al. A novel MGP mutation in a consanguineous family: review of the clinical and molecular characteristics of Keutel syndrome. Am J Med Genet A 2005; 135(1):36-40. doi: 10.1002/ajmg.a.30680http://dx.doi.org/10.1002/ajmg.a.30680.
O'Young J, Liao Y, Xiao Y, et al. Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J Am Chem Soc 2011; 133(45):18406-12. doi: 10.1021/ja207628khttp://dx.doi.org/10.1021/ja207628k.
Zebboudj AF, Imura M, Bostrom K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 2002; 277(6):4388-94. doi: 10.1074/jbc.M109683200http://dx.doi.org/10.1074/jbc.M109683200.
Spronk HM, Soute BA, Schurgers LJ, et al. Matrix Gla protein accumulates at the border of regions of calcification and normal tissue in the media of the arterial vessel wall. Biochem Biophys Res Commun 2001; 289(2):485-90. doi: 10.1006/bbrc.2001.5996http://dx.doi.org/10.1006/bbrc.2001.5996.
Shioi A, Taniwaki H, Jono S, et al. Monckeberg's medial sclerosis and inorganic phosphate in uremia. Am J Kidney Dis 2001; 38(4 Suppl 1):S47-49. doi: 10.1053/ajkd.2001.27396http://dx.doi.org/10.1053/ajkd.2001.27396.
Ravindran S, Swaminathan K, Ramesh A, et al. Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification. Acta Neurobiol Exp (Wars) 2017; 77(1):57-67. doi: 10.21307/ane-2017-036http://dx.doi.org/10.21307/ane-2017-036.
Ravindran S, Ramachandran K, Kurian GA. Sodium thiosulfate mediated cardioprotection against myocardial ischemia-reperfusion injury is defunct in rat heart with co-morbidity of vascular calcification. Biochimie 2018; 147:80-8. doi: 10.1016/j.biochi.2018.01.004http://dx.doi.org/10.1016/j.biochi.2018.01.004.
Ravindran S, Murali J, Amirthalingam SK, et al. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart. Vascul Pharmacol 2017; 89:31-8. doi: 10.1016/j.vph.2016.12.004http://dx.doi.org/10.1016/j.vph.2016.12.004.
Zhu Y, Han XQ, Sun XJ, et al. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2020,25:321-40. doi: 10.1007/s10495-020-01592-7http://dx.doi.org/10.1007/s10495-020-01592-7.
Patel L, Bernard LM, Elder GJ. Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol 2016; 11(2):232-44. doi: 10.2215/CJN.06800615http://dx.doi.org/10.2215/CJN.06800615.
Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 2011; 26(4):1327-39. doi: 10.1093/ndt/gfq725http://dx.doi.org/10.1093/ndt/gfq725.
Grases F, Simonet BM, Vucenik I, et al. Absorption and excretion of orally administered inositol hexaphosphate (IP(6) or phytate) in humans. Biofactors 2001; 15(1):53-61. doi: 10.1002/biof.5520150105http://dx.doi.org/10.1002/biof.5520150105.
Lopez-Gonzalez AA, Grases F, Monroy N, et al. Protective effect of myo-inositol hexaphosphate (phytate) on bone mass loss in postmenopausal women. Eur J Nutr 2013; 52(2):717-26. doi: 10.1007/s00394-012-0377-6http://dx.doi.org/10.1007/s00394-012-0377-6.
Joubert P, Ketteler M, Salcedo C, et al. Hypothesis: Phytate is an important unrecognised nutrient and potential intravenous drug for preventing vascular calcification. Med Hypotheses 2016; 94:89-92. doi: 10.1016/j.mehy.2016.07.005http://dx.doi.org/10.1016/j.mehy.2016.07.005.
Ferrer MD, Perez MM, Canaves MM, et al. A novel pharmacodynamic assay to evaluate the effects of crystallization inhibitors on calcium phosphate crystallization in human plasma. Sci Rep 2017; 7(1):6858. doi: 10.1038/s41598-017-07203-xhttp://dx.doi.org/10.1038/s41598-017-07203-x.
Perello J, Ferrer MD, Del Mar Perez M, et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br J Pharmacol 2020; 177(19):4400-15. doi: 10.1111/bph.15163http://dx.doi.org/10.1111/bph.15163.
Perello J, Joubert PH, Ferrer MD, et al. First-time-in-human randomized clinical trial in healthy volunteers and haemodialysis patients with SNF472, a novel inhibitor of vascular calcification. Br J Clin Pharmacol 2018; 84(12):2867-76. doi: 10.1111/bcp.13752http://dx.doi.org/10.1111/bcp.13752.
Raggi P, Bellasi A, Bushinsky D, et al. Slowing progression of cardiovascular calcification with snf472 in patients on hemodialysis: results of a randomized phase 2b study. Circulation 2020; 141(9):728-39. doi: 10.1161/CIRCULATIONAHA.119.044195http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044195.
Bushinsky DA, Raggi P, Bover J, et al. Effects of myo-inositol hexaphosphate (SNF472) on bone mineral density in patients receiving hemodialysis: an analysis of the randomized, placebo-controlled CaLIPSO Study. Clin J Am Soc Nephrol 2021; 16(5):736-45. doi: 10.2215/CJN.16931020http://dx.doi.org/10.2215/CJN.16931020.
Brandenburg VM, Sinha S, Torregrosa JV, et al. Improvement in wound healing, pain, and quality of life after 12 weeks of SNF472 treatment: a phase 2 open-label study of patients with calciphylaxis. J Nephrol 2019; 32(5):811-21. doi: 10.1007/s40620-019-00631-0http://dx.doi.org/10.1007/s40620-019-00631-0.
Sinha S, Gould LJ, Nigwekar SU, et al. The CALCIPHYX study: a randomized, double-blind, placebo-controlled, phase 3 clinical trial of SNF472 for the treatment of calciphylaxis. Clin Kidney J 2022; 15(1):136-44. doi: 10.1093/ckj/sfab117http://dx.doi.org/10.1093/ckj/sfab117.
Chao CT, Yeh HY, Tsai YT, et al. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification. Cell Death Discov 2019; 5:145. doi: 10.1038/s41420-019-0225-zhttp://dx.doi.org/10.1038/s41420-019-0225-z.
Zhou J, Wang H, Shen R, et al. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 2018; 10(6):1887-99.
Cui L, Zhou Q, Zheng X, et al. Mitoquinone attenuates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Free Radic Biol Med 2020; 161:23-31. doi: 10.1016/j.freeradbiomed.2020.09.028http://dx.doi.org/10.1016/j.freeradbiomed.2020.09.028.
Rossman MJ, Santos-Parker JR, Steward CAC, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 2018; 71(6):1056-63. doi: 10.1161/HYPERTENSIONAHA.117.10787http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10787.
Tharakan B, Holder-Haynes JG, Hunter FA, et al. Alpha lipoic acid attenuates microvascular endothelial cell hyperpermeability by inhibiting the intrinsic apoptotic signaling. Am J Surg 2008; 195(2):174-8. doi: 10.1016/j.amjsurg.2007.09.028http://dx.doi.org/10.1016/j.amjsurg.2007.09.028.
Kim H, Kim HJ, Lee K, et al. Alpha-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med 2012; 16(2):273-86. doi: 10.1111/j.1582-4934.2011.01294.xhttp://dx.doi.org/10.1111/j.1582-4934.2011.01294.x.
Himmelfarb J, Ikizler TA, Ellis C, et al. Provision of antioxidant therapy in hemodialysis (PATH): a randomized clinical trial. J Am Soc Nephrol 2014; 25(3):623-33. doi: 10.1681/ASN.2013050545http://dx.doi.org/10.1681/ASN.2013050545.
Safa J, Ardalan MR, Rezazadehsaatlou M, et al. Effects of alpha lipoic acid supplementation on serum levels of IL-8 and TNF-alpha in patient with ESRD undergoing hemodialysis. Int Urol Nephrol 2014; 46(8):1633-8. doi: 10.1007/s11255-014-0688-zhttp://dx.doi.org/10.1007/s11255-014-0688-z.
Peng T, Zhuo L, Wang Y, et al. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology (Carlton) 2018; 23(7):669-75. doi: 10.1111/nep.13081http://dx.doi.org/10.1111/nep.13081.
Zhong H, Liu F, Dai X, et al. Sodium thiosulfate protects human aortic smooth muscle cells from osteoblastic transdifferentiation via high-level phosphate. Kaohsiung J Med Sci 2013; 29(11):587-93. doi: 10.1016/j.kjms.2013.04.004http://dx.doi.org/10.1016/j.kjms.2013.04.004.
Chen NX, O'Neill K, Akl NK, et al. Adipocyte induced arterial calcification is prevented with sodium thiosulfate. Biochem Biophys Res Commun 2014; 449(1):151-6. doi: 10.1016/j.bbrc.2014.05.005http://dx.doi.org/10.1016/j.bbrc.2014.05.005.
Djuric P, Dimkovic N, Schlieper G, et al. Sodium thiosulphate and progression of vascular calcification in end-stage renal disease patients: a double-blind, randomized, placebo-controlled study. Nephrol Dial Transplant 2020; 35(1):162-9. doi: 10.1093/ndt/gfz204http://dx.doi.org/10.1093/ndt/gfz204.
Saengpanit D, Chattranukulchai P, Tumkosit M, et al. Effect of sodium thiosulfate on arterial stiffness in end-stage renal disease patients undergoing chronic hemodialysis (sodium thiosulfate-hemodialysis study): a randomized controlled trial. Nephron 2018; 139(3):219-27. doi: 10.1159/000488009http://dx.doi.org/10.1159/000488009.
Granata S, Dalla Gassa A, Tomei P, et al. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. doi: 10.1186/s12986-015-0044-zhttp://dx.doi.org/10.1186/s12986-015-0044-z.
Cui L, Li Z, Chang X, et al. Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission. Vascul Pharmacol 2017; 88:21-9. doi: 10.1016/j.vph.2016.11.006http://dx.doi.org/10.1016/j.vph.2016.11.006.
Beazley KE, Eghtesad S, Nurminskaya MV. Quercetin attenuates warfarin-induced vascular calcification in vitro independently from matrix Gla protein. J Biol Chem 2013; 288(4):2632-40. doi: 10.1074/jbc.M112.368639http://dx.doi.org/10.1074/jbc.M112.368639.
Chang XY, Cui L, Wang XZ, et al. Quercetin attenuates vascular calcification through suppressed oxidative stress in adenine-induced chronic renal failure rats. Biomed Res Int 2017; 2017:5716204. doi: 10.1155/2017/5716204http://dx.doi.org/10.1155/2017/5716204.
Chen J, Hamm LL, Bundy JD, et al. Combination treatment with sodium nitrite and isoquercetin on endothelial dysfunction among patients with CKD: a randomized phase 2 pilot trial. Clin J Am Soc Nephrol 2020; 15(11):1566-75. doi: 10.2215/CJN.02020220http://dx.doi.org/10.2215/CJN.02020220.
Suzuki S, Suzuki M, Hanafusa N, et al. Denosumab recovers aortic arch calcification during long-term hemodialysis. Kidney Int Rep 2021,6:605-12. doi: 10.1016/j.ekir.2020.12.002http://dx.doi.org/10.1016/j.ekir.2020.12.002.
Kim H, Lee EJ, Woo S, et al. Effect of denosumab on bone health, vascular calcification, and health-related quality of life in hemodialysis patients with osteoporosis: a prospective observational study. J Clin Med 2024,13. doi: 10.3390/jcm13051462http://dx.doi.org/10.3390/jcm13051462.
Al-Aly Z. Arterial calcification: a tumor necrosis factor-alpha mediated vascular Wnt-opathy. Transl Res 2008,151:233-9. doi: 10.1016/j.trsl.2007.12.005http://dx.doi.org/10.1016/j.trsl.2007.12.005.
Tiong MK, Smith ER, Toussaint ND, et al. Reduction of calciprotein particles in adults receiving infliximab for chronic inflammatory disease. JBMR Plus 2021,5:e10497. doi: 10.1002/jbm4.10497http://dx.doi.org/10.1002/jbm4.10497.
Zeng Q, Zhong Y, Yu X. Meta-analysis of the efficacy and safety of sevelamer as hyperphosphatemia therapy for hemodialysis patients. Ren Fail 2023,45:2210230. doi: 10.1080/0886022X.2023.2210230http://dx.doi.org/10.1080/0886022X.2023.2210230.
Lioufas NM, Pascoe EM, Hawley CM, et al. Systematic review and meta-analyses of the effects of phosphate-lowering agents in nondialysis CKD. J Am Soc Nephrol 2022,33:59-76. doi: 10.1681/ASN.2021040554http://dx.doi.org/10.1681/ASN.2021040554.
Hou YC, Zheng CM, Chiu HW, et al. Role of calcimimetics in treating bone and mineral disorders related to chronic kidney disease. Pharmaceuticals (Basel) 2022,15. doi: 10.3390/ph15080952http://dx.doi.org/10.3390/ph15080952.
Mary A, Objois T, Brazier M, et al. Decreased monocyte calcium sensing receptor expression in patients with chronic kidney disease is associated with impaired monocyte ability to reduce vascular calcification. Kidney Int 2021,99:1382-91. doi: 10.1016/j.kint.2021.01.026http://dx.doi.org/10.1016/j.kint.2021.01.026.
Zaslow SJ, Oliveira-Paula GH, Chen W. Magnesium and vascular calcification in chronic kidney disease: current insights. Int J Mol Sci 2024,25. doi: 10.3390/ijms25021155http://dx.doi.org/10.3390/ijms25021155.
Ter Braake AD, Smit AE, Bos C, et al. Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int 2020,97:487-501. doi: 10.1016/j.kint.2019.09.034http://dx.doi.org/10.1016/j.kint.2019.09.034.
Bressendorff I, Hansen D, Schou M, et al. The effect of magnesium supplementation on vascular calcification in CKD: a randomized clinical trial (MAGiCAL-CKD). J Am Soc Nephrol 2023,34:886-94. doi: 10.1681/ASN.0000000000000092http://dx.doi.org/10.1681/ASN.0000000000000092.
Zhan Y, Zhang R, Li G. Effect of magnesium on vascular calcification in chronic kidney disease patients: a systematic review and meta-analysis. Ren Fail 2023,45:2182603. doi: 10.1080/0886022X.2023.2182603http://dx.doi.org/10.1080/0886022X.2023.2182603.
Zhao L, Yang N, Song Y, et al. Effect of iron overload on endothelial cell calcification and its mechanism. Ann Transl Med 2021,9:1658. doi: 10.21037/atm-21-5666http://dx.doi.org/10.21037/atm-21-5666.
Ye Y, Chen A, Li L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int 2022,102:1259-75. doi: 10.1016/j.kint.2022.07.034http://dx.doi.org/10.1016/j.kint.2022.07.034.
Zhu K, Reiser J. ALKBH1 reduces DNA N6-methyladenine to allow for vascular calcification in chronic kidney disease. J Clin Invest 2021,131. doi: 10.1172/JCI150966http://dx.doi.org/10.1172/JCI150966.
Ouyang L, Su X, Li W, et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest 2021,131. doi: 10.1172/JCI146985http://dx.doi.org/10.1172/JCI146985.
Li W, Feng W, Su X, et al. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via RUNX2 in chronic kidney disease. J Clin Invest 2022,132. doi: 10.1172/JCI150051http://dx.doi.org/10.1172/JCI150051.
Wang S, Tong M, Hu S, et al. The bioactive substance secreted by MSC retards mouse aortic vascular smooth muscle cells calcification. Biomed Res Int 2018; 2018:6053567. doi: 10.1155/2018/6053567http://dx.doi.org/10.1155/2018/6053567.
Wang S, Hu S, Wang J, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2-Smad1/5/8 signaling pathway. Stem Cell Res Ther 2018; 9(1):160. doi: 10.1186/s13287-018-0894-1http://dx.doi.org/10.1186/s13287-018-0894-1.
Majesky MW, Dong XR, Regan JN, et al. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 2011; 108(3):365-77. doi: 10.1161/CIRCRESAHA.110.223800http://dx.doi.org/10.1161/CIRCRESAHA.110.223800.
Kramann R, Goettsch C, Wongboonsin J, et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 2016; 19(5):628-42. doi: 10.1016/j.stem.2016.08.001http://dx.doi.org/10.1016/j.stem.2016.08.001.
Angsubhakorn N, Kang N, Fearon C, et al. Contemporary management of severely calcified coronary lesions. J Pers Med 2022; 12(10). doi: 10.3390/jpm12101638http://dx.doi.org/10.3390/jpm12101638.
Bulluck H, McEntegart M. Contemporary tools and devices for coronary calcium modification. JRSM Cardiovasc Dis 2022; 11:20480040221089760. doi: 10.1177/20480040221089760http://dx.doi.org/10.1177/20480040221089760.
Secco GG, Ghione M, Mattesini A, et al. Very high-pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon. EuroIntervention 2016; 12(3):359-65. doi: 10.4244/EIJY15M06_04http://dx.doi.org/10.4244/EIJY15M06_04.
Albiero R, Silber S, Di Mario C, et al. Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the Restenosis Cutting Balloon Evaluation Trial (RESCUT). J Am Coll Cardiol 2004; 43(6):943-9. doi: 10.1016/j.jacc.2003.09.054http://dx.doi.org/10.1016/j.jacc.2003.09.054.
Jujo K, Saito K, Ishida I, et al. Intimal disruption affects drug-eluting cobalt-chromium stent expansion: a randomized trial comparing scoring and conventional balloon predilation. Int J Cardiol 2016; 221:23-31. doi: 10.1016/j.ijcard.2016.07.002http://dx.doi.org/10.1016/j.ijcard.2016.07.002.
Karimi Galougahi K, Patel S, Shlofmitz RA, et al. Calcific plaque modification by acoustic shock waves: intravascular lithotripsy in coronary interventions. Circ Cardiovasc Interv 2021; 14(1):e009354. doi: 10.1161/CIRCINTERVENTIONS.120.009354http://dx.doi.org/10.1161/CIRCINTERVENTIONS.120.009354.
Brinton TJ, Ali ZA, Hill JM, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation 2019; 139(6):834-6. doi: 10.1161/CIRCULATIONAHA.118.036531http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036531.
Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol 2020; 76(22):2635-46. doi: 10.1016/j.jacc.2020.09.603http://dx.doi.org/10.1016/j.jacc.2020.09.603.
Saito S, Yamazaki S, Takahashi A, et al. Intravascular lithotripsy for vessel preparation in severely calcified coronary arteries prior to stent placement - primary outcomes from the Japanese Disrupt CAD IV study. Circ J 2021; 85(6):826-33. doi: 10.1253/circj.CJ-20-1174http://dx.doi.org/10.1253/circj.CJ-20-1174.
Tepe G, Brodmann M, Werner M, et al. Intravascular lithotripsy for peripheral artery calcification: 30-day outcomes from the randomized disrupt PAD Ⅲ trial. JACC Cardiovasc Interv 2021; 14(12):1352-61. doi: 10.1016/j.jcin.2021.04.010http://dx.doi.org/10.1016/j.jcin.2021.04.010.
Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 2022; 145(3):e18-e114. doi: 10.1161/CIR.0000000000001038http://dx.doi.org/10.1161/CIR.0000000000001038.
Genereux P, Lee AC, Kim CY, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the pivotal ORBIT Ⅱ trial). Am J Cardiol 2015; 115(12):1685-90. doi: 10.1016/j.amjcard.2015.03.009http://dx.doi.org/10.1016/j.amjcard.2015.03.009.
Koster R, Kahler J, Brockhoff C, et al. Laser coronary angioplasty: history, present and future. Am J Cardiovasc Drugs 2002; 2(3):197-207. doi: 10.2165/00129784-200202030-00006http://dx.doi.org/10.2165/00129784-200202030-00006.
Mohandes M, Rojas S, Moreno C, et al. Excimer laser in percutaneous coronary intervention of device uncrossable chronic total and functional occlusions. Cardiovasc Revasc Med 2020; 21(5):657-60. doi: 10.1016/j.carrev.2019.08.022http://dx.doi.org/10.1016/j.carrev.2019.08.022.
Lee T, Shlofmitz RA, Song L, et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention 2019; 15(3):e279-e88. doi: 10.4244/EIJ-D-18-00139http://dx.doi.org/10.4244/EIJ-D-18-00139.
Kawashima H, Serruys PW, Hara H, et al. 10-year all-cause mortality following percutaneous or surgical revascularization in patients with heavy calcification. JACC Cardiovasc Interv 2022; 15(2):193-204. doi: 10.1016/j.jcin.2021.10.026http://dx.doi.org/10.1016/j.jcin.2021.10.026.
Naggara O, Touze E, Beyssen B, et al. Anatomical and technical factors associated with stroke or death during carotid angioplasty and stenting: results from the endarterectomy versus angioplasty in patients with symptomatic severe carotid stenosis (EVA-3S) trial and systematic review. Stroke 2011; 42(2):380-8. doi: 10.1161/STROKEAHA.110.588772http://dx.doi.org/10.1161/STROKEAHA.110.588772.
Publicity Resources
Related Articles
Related Author
Related Institution