FOLLOWUS
1.State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan250012, China
2.Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan250012, China
E-mail: daixh@vip.sina.com
Published:31 December 2024,
Published Online:15 November 2024,
Received:11 June 2024,
Accepted:2024-10-31
Scan QR Code
杨威,杨建霞,关敬元等.心肌应变在监测胃肠道癌症患者氟尿嘧啶类药物化疗相关心功能障碍方面的价值[J].中国医学科学杂志(英文),2024,39(04):273-281.
Yang Wei,Yang Jian-Xia,Guan Jing-Yuan,et al.Value of Myocardial Strain in Monitoring Fluorouracil-Based Chemotherapy-Related Cardiac Dysfunction in Gastrointestinal Cancer Patients[J].Chinese Medical Sciences Journal,2024,39(04):273-281.
杨威,杨建霞,关敬元等.心肌应变在监测胃肠道癌症患者氟尿嘧啶类药物化疗相关心功能障碍方面的价值[J].中国医学科学杂志(英文),2024,39(04):273-281. DOI: 10.24920/004387.
Yang Wei,Yang Jian-Xia,Guan Jing-Yuan,et al.Value of Myocardial Strain in Monitoring Fluorouracil-Based Chemotherapy-Related Cardiac Dysfunction in Gastrointestinal Cancer Patients[J].Chinese Medical Sciences Journal,2024,39(04):273-281. DOI: 10.24920/004387.
目的
2
探讨心肌应变对于胃肠道癌症患者使用氟尿嘧啶类药物引起的心脏毒性的预测价值。
方法
2
本前瞻性研究共纳入90例首次住院拟接受抗代谢类药物新辅助化疗或术后辅助化疗的胃肠道癌症患者。研究收集并分析了每个患者每周期住院化疗前后的超声心动图和临床数据。癌症治疗相关的心功能障碍 (cancer therapy-related cardiac dysfunction, CTRCD)定义为:左室射血分数 (left ventricular ejection fraction, LVEF)较基线降低至少5%至绝对值<53%, 同时伴有心力衰竭的症状或体征;或LVEF较基线降低至少10%至绝对值<53%, 不伴有心力衰竭的症状或体征。亚临床心功能损伤定义为:左室整体长轴应变 (global longitudinal strain, GLS)相较基线值减低至少15%。
结果
2
51例患者最终完成了4个周期的化疗和分析。4个周期化疗后, LVEF、GLS、GLS-epi(心脏外膜GLS)、GLS-endo(心脏内膜GLS)均有所下降。在整个随访期间, 共有6例 (11.8%)患者发展为 CTRCD, 13例 (25.5%)患者发展为 CTRCD 以外的亚临床心功能损害。COX回归分析显示, 化疗一周期后, 左房射血分数和左房储备期应变的变化率 (分别为C1v-LAEF和C1v-LASr)与CTRCD相关[C1v-LAEF (HR=1.040;95%
CI
:1.000-1.082;
P
=0.047);C1v-LASr (HR=1.024;95%
CI
:1.000-1.048;P=0.048)]。以C1v-LAEF>19.68%为临界值时, C1v-LAEF预测CTRCD的灵敏度和特异度分别为50.0%和93.3%;以C1v-LASr>14.73%为临界值时, C1v-LASr预测CTRCD的灵敏度和特异度分别为66.7%和75.6%。C1v-LAEF和C1v-LASr预测CTRCD的ROC曲线下面积分别为0.694和0.707。
结论
2
接受氟尿嘧啶类药物化疗的患者出现亚临床心功能损害时 GLS 发生改变, C1v-LAEF 和 C1v-LASr 是心功能损害的早期预测指标。
Objective
2
To investigate the predictive value of myocardial strain for cardiotoxicity associated with fluorouracil-based chemotherapies in gastrointestinal cancer patients.
Methods
2
Patients with diagnosis of gastrointestinal cancers
who were hospitalized for chemotherapy involving antimetabolic drugs
were eligible in this prospective study. Echocardiography was performed before and after each chemotherapy cycle during hospitalization until the completion of chemotherapy. Cancer therapy-related cardiac dysfunction (CTRCD) was identified if there was a decrease in left ventricular ejection fraction (LVEF) by at least 5% to an absolute value of < 53% from the baseline
accompanied by symptoms or signs of heart failure; or a decrease in LVEF of at least 10% to an absolute value of < 53% from the baseline
without symptoms or signs of heart failure. Subclinical cardiac impairment is defined as a decrease in the left ventricular global longitudinal strain (GLS) of at least 15% from baseline.Clinical data and myocardial strain variables were collected. Changes of echocardiographic indexes after chemotherapy at each cycle were observed and compared to those of pre-chemotherapy. Cox regression analysis was used to determine the associated indexes to CTRCD
and receiver operating characteristic (ROC) curves were plotted for evaluation of their predicting efficacy.
Results
2
Fifty-one patients completed 4 cycles of chemotherapy and were enrolled in the study analysis. LVEF
GLS
GLS epicardium (GLS-epi)
and GLS endocardium (GLS-endo) were decreased after the 4 cycles of chemotherapy. Throughout the chemotherapy period
6 patients (11.8%) progressed to CTRCD. The Cox regression analysis revealed that the change in left atrial ejection fraction (LAEF) and LAS during the reservoir (LASr) phase after the first cycle of chemotherapy (C1v-LAEF and C1v-LASr
respectively)
were significantly associated with the development of CTRCD [C1v-LAEF (
HR
=1.040; 95%
CI
: 1.000-1.082;
P
=0.047); C1v-LASr (
HR
=1.024; 95%
CI
: 1.000-1.048;
P
=0.048)
]
. The sensitivity and specificity were 50.0% and 93.3%
respectively
for C1v-LAEF predicting CTRCD when C1v-LAEF
>
19.68% was used as the cut-off value
and were 66.7% and 75.6%
respectively
for C1v-LASr predicting CTRCD when C1v-LASr
>
14.73% was used as the cut-off value. The areas under the ROC curve (AUC) for C1v-LAEF and C1v-LASr predicting CTRCD were 0.694 and 0.707
respectively.
Conclusion
2
GLS changes among patients with subclinical impairment of cardiac function who were treated with fluorouracil-based chemotherapies
and C1v-LAEF and C1v-LASr of the left atrium are early predictors of cardiac function deterioration.
氟尿嘧啶心血管毒性超声心动图斑点追踪显像技术心肌做功心肌应变
fluorouracilcardiovascular toxicityechocardiographyspeckle tracking imaging techniquemyocardial workmyocardial strain
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin2021; 71(3):209-49. doi: 10.3322/caac.21660http://dx.doi.org/10.3322/caac.21660.
André T, Quinaux E, Louvet C, et al. Phase Ⅲ study comparing a semimonthly with a monthly regimen of fluorouracil and leucovorin as adjuvant treatment for stage Ⅱ and Ⅲ colon cancer patients: final results of GERCOR C96.1. J Clin Oncol2007; 25(24):3732-8. doi: 10.1200/JCO.2007.12.2234http://dx.doi.org/10.1200/JCO.2007.12.2234.
Gray R, Barnwell J, McConkey C, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet2007; 370(9604): 2020-9. doi: 10.1016/S0140-6736(07)61866-2http://dx.doi.org/10.1016/S0140-6736(07)61866-2.
Shin DW, Ahn E, Kim H, et al. Non-cancer mortality among long-term survivors of adult cancer in Korea: national cancer registry study. Cancer Causes Control2010; 21(6): 919-29. doi: 10.1007/s10552-010-9521-xhttp://dx.doi.org/10.1007/s10552-010-9521-x.
Van Cutsem E, Hoff PM, Blum JL, et al. Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann Oncol2002; 13(3): 484-5. doi: 10.1093/annonc/mdf108http://dx.doi.org/10.1093/annonc/mdf108.
Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf2009; 8(2): 191-202. doi: 10.1517/14740330902733961http://dx.doi.org/10.1517/14740330902733961.
Keramida K, Charalampopoulos G, Filippiadis D, et al. Cardiovascular complications of metastatic colorectal cancer treatment. J Gastrointest Oncol2019; 10(4): 797-806. doi: 10.21037/jgo.2019.03.04http://dx.doi.org/10.21037/jgo.2019.03.04.
Becker K, Erckenbrecht JF, Häussinger D, et al. Cardiotoxicity of the antiproliferative compound fluorouracil. Drugs1999; 57(4): 475-84. doi: 10.2165/00003495-199957040-00003http://dx.doi.org/10.2165/00003495-199957040-00003.
Zamorano JL, Lancellotti P, Rodriguez MD, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). Eur Heart J2016; 37(36): 2768-801. doi: 10.1093/eurheartj/ehw211http://dx.doi.org/10.1093/eurheartj/ehw211.
Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol2020; 31(2): 171-90. doi: 10.1016/j.annonc.2019.10.023http://dx.doi.org/10.1016/j.annonc.2019.10.023.
Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol2014; 63(6):493-505. doi: 10.1016/j.jacc.2013.10.055http://dx.doi.org/10.1016/j.jacc.2013.10.055.
Negishi T, Negishi K. Echocardiographic evaluation of cardiac function after cancer chemotherapy. J Echocardiogr2018; 16(1): 20-7. doi: 10.1007/s12574-017-0344-6http://dx.doi.org/10.1007/s12574-017-0344-6.
Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr2019; 32(1): 1-64. doi: 10.1016/j.echo.2018.06.004http://dx.doi.org/10.1016/j.echo.2018.06.004.
Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging2015; 16(1): 1-11. doi: 10.1093/ehjci/jeu184http://dx.doi.org/10.1093/ehjci/jeu184.
Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr2010; 23(4): 351-69. doi: 10.1016/j.echo.2010.02.015http://dx.doi.org/10.1016/j.echo.2010.02.015.
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr2015; 28(1): 1-39.e14. doi: 10.1016/j.echo.2014.10.003http://dx.doi.org/10.1016/j.echo.2014.10.003.
Buss SJ, Emami M, Mereles D, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol2012; 60(12): 1067-76. doi: 10.1016/j.jacc.2012.04.043http://dx.doi.org/10.1016/j.jacc.2012.04.043.
Reant P, Mirabel M, Lloyd G, et al. Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart2016; 102(10): 741-7. doi: 10.1136/heartjnl-2015-308576http://dx.doi.org/10.1136/heartjnl-2015-308576.
Kearney LG, Lu K, Ord M, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging2012; 13(10):827-33. doi: 10.1093/ehjci/jes115http://dx.doi.org/10.1093/ehjci/jes115.
Gjesdal O, Vartdal T, Hopp E, et al. Left ventricle longitudinal deformation assessment by mitral annulus displacement or global longitudinal strain in chronic ischemic heart disease: are they interchangeable. J Am Soc Echocardiogr2009; 22(7): 823-30. doi: 10.1016/j.echo.2009.04.023http://dx.doi.org/10.1016/j.echo.2009.04.023.
Roemer S, Jaglan A, Santos D, et al. The Utility of Myocardial Work in Clinical Practice. J Am Soc Echocardiogr2021; 34(8): 807-18. doi: 10.1016/j.echo.2021.04.013http://dx.doi.org/10.1016/j.echo.2021.04.013.
Rosca M, Lancellotti P, Popescu BA, et al. Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications. Heart2011; 97(23): 1982-9. doi: 10.1136/heartjnl-2011-300069http://dx.doi.org/10.1136/heartjnl-2011-300069.
Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging2018; 19(6): 591-600. doi: 10.1093/ehjci/jey042http://dx.doi.org/10.1093/ehjci/jey042.
Maffeis C, Rossi A, Cannata L, et al. Left atrial strain predicts exercise capacity in heart failure independently of left ventricular ejection fraction. ESC Heart Fail2022; 9(2):842-52. doi: 10.1002/ehf2.13788http://dx.doi.org/10.1002/ehf2.13788.
Publicity Resources
Related Articles
Related Author
Related Institution