FOLLOWUS
1.State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
2.Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, China
3.State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
4.Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
E-mail: pengxiaozhong@pumc.edu.cn
Published:30 September 2024,
Published Online:25 September 2024,
Received:28 June 2024,
Accepted:2024-08-13
Scan QR Code
茉丽都尔·哈米提 ,张心湉,朱瑞敏等.多嘧啶束结合蛋白通过与内部核糖体进入位点的5’UTR结合增强寨卡病毒的翻译能力[J]. 中国医学科学杂志(英文),2024,39(03):162-170.
Hamiti Moliduer,Zhang Xin-Tian,Zhu Rui-Min,et al.Polypyrimidine Tract-Binding Protein Enhances Zika Virus Translation by Binding to the 5'UTR of Internal Ribosomal Entry Site[J].Chinese Medical Sciences Journal,2024,39(03):162-170.
茉丽都尔·哈米提 ,张心湉,朱瑞敏等.多嘧啶束结合蛋白通过与内部核糖体进入位点的5’UTR结合增强寨卡病毒的翻译能力[J]. 中国医学科学杂志(英文),2024,39(03):162-170. DOI: 10.24920/004393.
Hamiti Moliduer,Zhang Xin-Tian,Zhu Rui-Min,et al.Polypyrimidine Tract-Binding Protein Enhances Zika Virus Translation by Binding to the 5'UTR of Internal Ribosomal Entry Site[J].Chinese Medical Sciences Journal,2024,39(03):162-170. DOI: 10.24920/004393.
目的
2
识别寨卡病毒(Zika virus,ZIKV)5’非翻译区(5’ untranslated region,5’UTR)的RNA结合蛋白,并探讨结合蛋白对位于ZIKV 5’UTR的内部核糖体进入位点(internal ribosomal entry site,IRES)活性及病毒产生的影响。
方法
2
使用tRSA标记的ZIKV 5’UTR RNA捕获U251细胞中与之相互作用的蛋白,采用SDS-PAGE银染法获得tRSA-ZIKV 5’UTR RNA候选结合蛋白的条带。随后,利用液相色谱-串联质谱法、生物信息学分析和Western blot分析研究与ZIKV 5’UTR结合的候选蛋白。采用双顺反子表达实验和蚀斑形成实验分析结合蛋白对ZIKV IRES活性和ZIKV产生的影响。
结果
2
tRSA
RNA pull-down分析、液相色谱-串联质谱法和Western blot分析显示多嘧啶束结合蛋白(polypyrimidine tract-binding protein,PTB)为与ZIKV 5'UTR结合的蛋白。双荧光素酶报告基因检测结果显示:PTB过表达能显著增强ZIKV的IRES活性(
t
= 10.220,
P
<
0.001),而降低PTB表达则效果相反(
t
= 4.897,
P
<
0.01)。此外,病毒噬斑形成实验表明:上调PTB表达能显著提高病毒滴度(
t
= 6.400,
P
<
0.01),而降低PTB表达水平则会削弱病毒的感染能力(
t
= 5.055,
P
<
0.01)。
结论
2
PTB对ZIKV 5’UTR发挥正向调节作用,能增强IRES活性和提高病毒产量。
Objectives
2
To identify the 5' untranslated region of Zika virus (ZIKV 5'UTR) RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site (IRES) located in ZIKV 5'UTR and virus production.
Methods
2
Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining. Subsequently
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
bioinformatics analysis
and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR. Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production
respecitvely.
Results
2
tRSA RNA pull-down assay
LC-MS/MS
and Western blot analysis showed that polypyrimidine tract-binding protein (PTB) bound to the ZIKV 5'UTR. Furthermore
dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV (
t
= 10.220
P
<
0.001)
while PTB knockdown had the opposite effect (
t
= 4.897
P
<
0.01). Additionally
virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer (
t
= 6.400
P
<
0.01)
whereas reducing PTB expression level weakened virus infectivity (
t
= 5.055
P
<
0.01).
Conclusion
2
PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.
内部核糖体进入位点多嘧啶束结合蛋白寨卡病毒tRSA RNA pull-down双荧光素酶报告基因检测
internal ribosomal entry sitepolypyrimidine tract-binding proteinZika virustRSA RNA pull-downdual-luciferase reporter assay
Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev 2016; 29(3):487-524. doi: 10.1128/CMR.00072-15http://dx.doi.org/10.1128/CMR.00072-15.
Plourde AR, Bloch EM. A literature review of Zika virus. Emerg Infect Dis 2016; 22(7):1185-92. doi: 10.3201/eid2207.151990http://dx.doi.org/10.3201/eid2207.151990.
Hasan S, Saeed S, Panigrahi R, et al. Zika virus: a global public health menace: a comprehensive update. J Int Soc Prev Community Dent 2019; 9(4):316-27. doi: 10.4103/jispcd.JISPCD_433_18http://dx.doi.org/10.4103/jispcd.JISPCD_433_18.
Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 1954; 48(2):139-45. doi: 10.1016/0035-9203(54)90006-1http://dx.doi.org/10.1016/0035-9203(54)90006-1.
Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 1952; 46(5):509-20. doi: 10.1016/0035-9203(52)90042-4http://dx.doi.org/10.1016/0035-9203(52)90042-4.
Barrows NJ, Campos RK, Liao KC, et al. Biochemistry and molecular biology of Flaviviruses. Chem Rev 2018;118(8):4448-82. doi: 10.1021/acs.chemrev.7b00719http://dx.doi.org/10.1021/acs.chemrev.7b00719.
Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol 2019;15(11):671-83. doi: 10.1038/s41582-019-0250-9http://dx.doi.org/10.1038/s41582-019-0250-9.
Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387(10027):1531-9. doi: 10.1016/S0140-6736(16)00562-6http://dx.doi.org/10.1016/S0140-6736(16)00562-6.
Hancock WT, Marfel M, Bel M. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 2014; 20(11):1960. doi: 10.3201/eid2011.141380http://dx.doi.org/10.3201/eid2011.141380.
Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect 2014; 20(10):0595-6. doi: 10.1111/1469-0691.12707http://dx.doi.org/10.1111/1469-0691.12707.
Musso D, Ko AI, Baud D. Zika virus infection—after the pandemic. N Engl J Med 2019; 381(15):1444-57. doi: 10.1056/NEJMra1808246http://dx.doi.org/10.1056/NEJMra1808246.
Song Y, Mugavero J, Stauft CB, et al. Dengue and Zika virus 5' untranslated regions harbor internal ribosomal entry site functions. mBio 2019; 10(2):e00459-19. doi: 10.1128/mBio.00459-19http://dx.doi.org/10.1128/mBio.00459-19.
Shi Y, Gao GF. Structural biology of the Zika virus. Trends Biochem Sci 2017; 42(6):443-56. doi: 10.1016/j.tibs.2017.02.009http://dx.doi.org/10.1016/j.tibs.2017.02.009.
Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334(6180):320-5. doi: 10.1038/334320a0http://dx.doi.org/10.1038/334320a0.
Jang SK, Kräusslich HG, Nicklin MJ, et al. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988; 62(8):2636-43. doi: 10.1128/JVI.62.8.2636-2643http://dx.doi.org/10.1128/JVI.62.8.2636-2643.
Jaafar ZA, Kieft JS. Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol 2019; 17(2):110-23. doi: 10.1038/s41579-018-0117-xhttp://dx.doi.org/10.1038/s41579-018-0117-x.
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev RNA 2018; 9(2):e1458. doi: 10.1002/wrna.1458http://dx.doi.org/10.1002/wrna.1458.
Godet AC, David F, Hantelys F, et al. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci 2019; 20(4):924. doi: 10.3390/ijms20040924http://dx.doi.org/10.3390/ijms20040924.
López-Ulloa B, Fuentes Y, Pizarro-Ortega MS, et al. RNA-binding proteins as regulators of internal initiation of viral mRNA translation. Viruses 2022; 14(2):188. doi: 10.3390/v14020188http://dx.doi.org/10.3390/v14020188.
Kafasla P, Morgner N, Robinson CV, et al. Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J 2010; 29(21):3710-22. doi: 10.1038/emboj.2010.231http://dx.doi.org/10.1038/emboj.2010.231.
Asnani M, Kumar P, Hellen CU. Widespread distribution and structural diversity of Type IV IRESs in members of Picornaviridae. Virology 2015; 478:61-74. doi: 10.1016/j.virol.2015.02.016http://dx.doi.org/10.1016/j.virol.2015.02.016.
Kafasla P, Morgner N, Pöyry TA, et al. Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell 2009; 34(5):556-68. doi: 10.1016/j.molcel.2009.04.015http://dx.doi.org/10.1016/j.molcel.2009.04.015.
Xi J, Ye F, Wang G, et al. Polypyrimidine tract-binding protein regulates Enterovirus 71 translation through interaction with the internal ribosomal entry site. Virol Sin 2019; 34(1):66-77. doi: 10.1007/s12250-019-00089-1http://dx.doi.org/10.1007/s12250-019-00089-1.
Schultz DE, Hardin CC, Lemon SM. Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5'-nontranslated RNA of hepatitis A virus. J Biol Chem 1996; 271(24):14134-42. doi: 10.1074/jbc.271.24.14134http://dx.doi.org/10.1074/jbc.271.24.14134.
Ali N, Siddiqui A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 1995; 69(10):6367-75. doi: 10.1128/JVI.69.10.6367-6375.1995http://dx.doi.org/10.1128/JVI.69.10.6367-6375.1995.
Hunt SL, Jackson RJ. Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 1999; 5(3):344-59. doi: 10.1017/s1355838299981414http://dx.doi.org/10.1017/s1355838299981414.
Verma B, Bhattacharyya S, Das S. Polypyrimidine tract-binding protein interacts with coxsackievirus B3 RNA and influences its translation. J Gen Virol 2010; 91(Pt 5):1245-55. doi: 10.1099/vir.0.018507-0http://dx.doi.org/10.1099/vir.0.018507-0.
Kafasla P, Mickleburgh I, Llorian M, et al. Defining the roles and interactions of PTB. Biochem Soc Trans 2012; 40(4):815-20. doi: 10.1042/BST20120044http://dx.doi.org/10.1042/BST20120044.
Iioka H, Loiselle D, Haystead TA, et al. Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res 2011; 39(8):e53. doi: 10.1093/nar/gkq1316http://dx.doi.org/10.1093/nar/gkq1316. Epub 2011 Feb 7.
De Nova-Ocampo M, Villegas-Sepúlveda N, del Angel RM. Translation elongation factor-1alpha, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA. Virology 2002; 295(2):337-47. doi: 10.1006/viro.2002.1407http://dx.doi.org/10.1006/viro.2002.1407.
Publicity Resources
Related Articles
Related Author
Related Institution