FOLLOWUS
1.School of Public Health
2.Shaanxi Key Laboratory of Acupuncture & Medicine, Shaanxi University of Chinese Medicine, Xianyang712046, Shaanxi, China
E-mail: xsz@sntcm.edu.cn
Published:31 December 2024,
Published Online:23 December 2024,
Received:25 July 2024,
Accepted:2024-11-12
Scan QR Code
方柔柔,杨启帆,赵晶等.与非酒精性脂肪肝铜死亡和铁死亡相关的核心基因:生物信息学分析[J].中国医学科学杂志(英文),2024,39(04):261-272.
Fang Rou-Rou,Yang Qi-Fan,Zhao Jing,et al.A Novel Signature Combing Cuproptosis- and Ferroptosis-Related Genes in Nonalcoholic Fatty Liver Disease[J].Chinese Medical Sciences Journal,2024,39(04):261-272.
方柔柔,杨启帆,赵晶等.与非酒精性脂肪肝铜死亡和铁死亡相关的核心基因:生物信息学分析[J].中国医学科学杂志(英文),2024,39(04):261-272. DOI: 10.24920/004403.
Fang Rou-Rou,Yang Qi-Fan,Zhao Jing,et al.A Novel Signature Combing Cuproptosis- and Ferroptosis-Related Genes in Nonalcoholic Fatty Liver Disease[J].Chinese Medical Sciences Journal,2024,39(04):261-272. DOI: 10.24920/004403.
目的
2
筛选参与非酒精性脂肪肝铜死亡和铁死亡过程的核心基因,并确定其对非酒精性脂肪肝的诊断价值。
方法
2
本研究从基因表达综合(Gene Expression Omnibus,GEO)数据库中下载非酒精性脂肪肝转录组数据集GSE89632,运用R软件包的"limma"以及加权基因共表达网络分析(weighted correlation network analysis,WGCNA)方法,筛选非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)组和健康对照(healthy control,HC)组的差异表达基因(differentially expressed genes,DEGs)。采用基因本体(Gene Ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG),对DEGs进行功能富集分析。从FerrDb V2数据库中提取铁死亡相关基因,并通过文献检索获取铜死亡相关基因。利用STRING数据库构建与铜死亡和铁死亡均相关的基因,命名为CRF(cuproptosis - and ferroptosis-related,CRF)基因。DEGs、WGCNA和CRF基因的交集作为核心基因,采用GSE109836和GSE227714数据集和实时定量聚合酶链反应(real-time quantitative polymerase chain reaction,RT-qPCR)验证核心基因核心基因的在NASH患者中的表达情况。利用R软件包的"rms",基于核心基因构建非酒精性脂肪肝诊断模型的诺曼图,采用接受者操作特性曲线(receiver operating characteristic,ROC)分析评估核心基因对非酒精性脂肪肝的诊断价值。此外,采用CIBERSORT算法分型NASH组与HC组的免疫细胞浸润情况。采用Spearman相关性分析探讨各种浸润免疫细胞间的关系。
结果
2
GSE89632数据集分析显示,NASH组与HC组之间存在236个DEGs。WGCNA分析揭示了8个显著模块和11,095个模块基因。其中330个为CRF基因。交集分析发现,
IL6
、
IL1B
、
JUN
、
NR4A1
和
PTGS2
为核心基因,它们在NASH患者的肝组织中均表达下调,此结果得到了验证数据集和RT-qPCR的验证。ROC曲线分析显示,这些基因对非酒精性脂肪肝具有良好的诊断效能,它们的曲线下面积分别为0.985、0.941、1.000、0.967和0.985。NASH组的γδT细胞、M1巨噬细胞、M2巨噬细胞和静息肥大细胞的浸润比例高于HC组。
结论
2
IL6、IL1B、JUN、NR4A1和PTGS2是与非酒精性脂肪肝铜死亡和铁死亡相关的核心基因,此发现为深入理解非酒精性脂肪肝的发病机制提供了新见解,可能为疾病的诊断和治疗靶点提供新方向。
Objective
2
To identify cuproptosis- and ferroptosis-related genes involved in nonalcoholic fatty liver disease and to determine the diagnostic value of hub genes.
Methods
2
The gene expression dataset GSE89632 was retrieved from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between the non-alcoholic steatohepatitis (NASH) group and the healthy group using the 'limma' package in R software and weighted gene co-expression network analysis. Gene ontology
kyoto encyclopedia of genes and genomes pathway
and single-sample gene set enrichment analyses were performed to identify functional enrichment of DEGs. Ferroptosis- and cupr
optosis-related genes were obtained from the FerrDb V2 database and available literatures
respectively. A combined signature for cuproptosis- and ferroptosis-related genes
called CRF
was constructed using the STRING database. Hub genes were identified by overlapping DEGs
WGCNA-derived key genes
and combined signature CRF genes
and validated using the GSE109836 and GSE227714 datasets and real-time quantitative polymerase chain reaction. A nomogram of NASH diagnostic model was established utilizing the 'rms' package in R software based on the hub genes
and the diagnostic value of hub genes was assessed using receiver operating characteristic curve analysis. In addition
immune cell infiltration in NASH
versus
healthy controls was examined using the CIBERSORT algorithm. The relationships among various infiltrated immune cells were explored with Spearman's correlation analysis.
Results
2
Analysis of GSE89632 identified 236 DEGs between the NASH group and the healthy group. WGCNA highlighted 8 significant modules and 11
095 pivotal genes
of which 330 genes constituted CRF. Intersection analysis identified
IL
6
IL
1
B
JUN
NR
4
A
1
and
PTGS
2 as hub genes. The hub genes were all downregulated in the NASH group
and this result was further verified by the NASH validation dataset and real-time quantitative polymerase chain reaction. Receiver operating characteristic curve analysis confirmed the diagnostic efficacy of these hub genes with areas under the curve of 0.985
0.941
1.000
0.967
and 0.985
respectively. Immune infiltration assessment revealed that gamma delta T cells
M1 macrophages
M2 macrophages
and resting mast cells were predominantly implicated.
Conclusion
2
Our investigation underscores the significant association of cuproptosis- and ferroptosis-related genes
specifically
IL
6
IL
1
B
JUN
NR
4
A
1
and
PTGS
2
with NASH. These findings offer novel insights into the pathogenesis of NASH
potentially guiding future diagnostic and therapeutic strategies.
非酒精性脂肪肝铜死亡铁死亡生物信息学分析
nonalcoholic fatty liver diseasecuproptosisferroptosisbioinformatics analysis
Wu C, Zhou Y, Wang M, et al. Bioinformatics analysis explores potential hub genes in nonalcoholic fatty liver disease. Front Genet2021; 12:772487. doi: 10.3389/fgene.2021.772487http://dx.doi.org/10.3389/fgene.2021.772487.
Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol2022; 46(9):102003. doi: 10.1016/j.clinre. 2022.102003http://dx.doi.org/10.1016/j.clinre.2022.102003.
Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Lond)2018; 18(3):245-50. doi: 10.7861/clinmedicine.18-3-245http://dx.doi.org/10.7861/clinmedicine.18-3-245.
Zhang C, Yang M. Current options and future directions for NAFLD and NASH treatment. Int J Mol Sci2021; 22(14):7571. doi: 10.3390/ijms22147571http://dx.doi.org/10.3390/ijms22147571.
Chen Y, Tian Z. Roles of hepatic innate and innate-like lymphocytes in nonalcoholic steatohepatitis. Front Immunol2020; 11:1500. doi: 10.3389/fimmu.2020.01500http://dx.doi.org/10.3389/fimmu.2020.01500.
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med2019; 133:130-43. doi: 10.1016/j.freeradbiomed.2018.09.043http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.043.
Chen LD, Wu RH, Huang YZ, et al. The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats. Sleep Breath2020; 24(4):1767-73. doi: 10.1007/s11325-020-02091-4http://dx.doi.org/10.1007/s11325-020-02091-4.
Carlson BA, Tobe R, Yefremova E, et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol2016; 9:22-31. doi: 10.1016/j.redox.2016.05.003http://dx.doi.org/10.1016/j.redox.2016.05.003.
Jin B, Zhang Z, Zhang Y, et al. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol2024; 15:1482986. doi: 10.3389/fphar.2024.1482986http://dx.doi.org/10.3389/fphar.2024.1482986.
Wang S, Liu Z, Geng J, et al. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed Pharmacother2022; 153:113374. doi: 10.1016/j.biopha.2022.113374http://dx.doi.org/10.1016/j.biopha.2022.113374.
Kumar R, Goh BG, Kam JW, et al. Comparisons between non-alcoholic steatohepatitis and alcohol-related hepatocellular carcinoma. Clin Mol Hepatol2020; 26(2):196-208. doi: 10.3350/cmh.2019.0012http://dx.doi.org/10.3350/cmh.2019.0012.
Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease. Cell Death Differ2022; 29(3):467-80. doi: 10.1038/s41418-022-00941-0http://dx.doi.org/10.1038/s41418-022-00941-0.
Krishnamoorthy L, JrCotruvo JA, Chan J, et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol2016; 12(8):586-92. doi: 10.1038/nchembio.2098http://dx.doi.org/10.1038/nchembio.2098.
Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature2014; 509(7501):492-96. doi: 10.1038/nature13180http://dx.doi.org/10.1038/nature13180.
Dodani SC, Firl A, Chan J, et al. Copper is an endogenous modulator of neural circuit spontaneous activity. Proc Natl Acad Sci USA2014; 111(46):16280-5. doi: 10.1073/pnas.1409796111http://dx.doi.org/10.1073/pnas.1409796111.
Turski ML, Brady DC, Kim HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol2012; 32(7):1284-95. doi: 10.1128/mcb.05722-11http://dx.doi.org/10.1128/mcb.05722-11.
Tsang T, Posimo JM, Gudiel AA, et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol2020; 22(4):412-24. doi: 10.1038/s41556-020-0481-4http://dx.doi.org/10.1038/s41556-020-0481-4.
Gul NS, Khan TM, Chen M, et al. New copper complexes inducing bimodal death through apoptosis and autophagy in A549 cancer cells. J Inorg Biochem2020; 213:111260. doi: 10.1016/j.jinorgbio.2020.111260http://dx.doi.org/10.1016/j.jinorgbio.2020.111260.
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science2022; 375(6586):1254-61. doi: 10.1126/science.abf0529http://dx.doi.org/10.1126/science.abf0529.
Song J, Ren K, Zhang D, et al. A novel signature combing cuproptosis- and ferroptosis-related genes in sepsis-induced cardiomyopathy. Front Genet2023; 14:1170737. doi: 10.3389/fgene.2023.1170737http://dx.doi.org/10.3389/fgene.2023.1170737.
Arendt BM, Comelli EM, Ma DW, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology2015; 61(5):1565-78. doi: 10.1002/hep.27695http://dx.doi.org/10.1002/hep.27695.
Chen S, Liu P, Zhao L, et al. A novel cuproptosis-related prognostic lncRNA signature for predicting immune and drug therapy response in hepatocellular carcinoma Front Immunol2022; 13:954653. doi: 10.3389/fimmu.2022.954653http://dx.doi.org/10.3389/fimmu.2022.954653.
Chen Y, Tang L, Huang W, et al. Identification and validation of a novel cuproptosis-related signature as a prognostic model for lung adenocarcinoma. Front Endocrinol (Lausanne)2022; 13:963220. doi: 10.3389/fendo.2022.963220http://dx.doi.org/10.3389/fendo.2022.963220.
Mahmoudi A, Hajihasani MM, Majeed M, et al. Effect of Calebin-A on critical genes related to NAFLD: a protein-protein interaction network and molecular docking study. Curr Genomics2024; 25(2):120-39. doi: 10.2174/0113892029280454240214072212http://dx.doi.org/10.2174/0113892029280454240214072212.
Su T, He Y, Wang M, et al. Macrophage-hepatocyte circuits mediated by grancalcin aggravate the progression of metabolic dysfunction associated steatohepatitis. Adv Sci (Weinh)2024; 11(42):2406500. doi: 10.1002/advs.202406500http://dx.doi.org/10.1002/advs.202406500.
Xin SL, Yu YY. Ubiquitin-specific peptidase 10 ameliorates hepatic steatosis in nonalcoholic steatohepatitis model by restoring autophagic activity. Dig Liver Dis2022; 54(8):1021-9. doi: 10.1016/j.dld.2022.02.009http://dx.doi.org/10.1016/j.dld.2022.02.009.
Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics2019; 11(1):104. doi: 10.1186/s13148-019-0702-5http://dx.doi.org/10.1186/s13148-019-0702-5.
Dai W, Sun Y, Jiang Z, et al. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Med Sci Monit2020; 26:e922492. doi: 10.12659/msm.922492http://dx.doi.org/10.12659/msm.922492.
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell2011; 147(4):742-58. doi: 10.1016/j.cell.2011.10.033http://dx.doi.org/10.1016/j.cell.2011.10.033.
Zhang J, Xie H, Yao J, et al. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell2023; 36(1):209-22. doi: 10.1007/s13577-022-00820-3http://dx.doi.org/10.1007/s13577-022-00820-3.
Khan RS, Bril F, Cusi K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology2019; 70(2):711-24. doi: 10.1002/hep.30429http://dx.doi.org/10.1002/hep.30429.
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD)—pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev2017; 49(2):197-211. doi: 10.1080/03602532.2017.1293683http://dx.doi.org/10.1080/03602532.2017.1293683.
Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond)2011; 120(6):239-50. doi: 10.1042/cs20100387http://dx.doi.org/10.1042/cs20100387.
Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol2015; 12(7):387-400. doi: 10.1038/nrgastro.2015.94http://dx.doi.org/10.1038/nrgastro.2015.94.
Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: Friend or Foe?Gastroenterology2016; 150(8):1704-9. doi: 10.1053/j.gastro.2016.01.025http://dx.doi.org/10.1053/j.gastro.2016.01.025.
Yuen MF, Wu PC, Lai VC, et al. Expression of c-Myc, c-Fos, and c-Jun in hepatocellular carcinoma. Cancer2001; 91(1):106-12. doi: 10.1002/1097-0142(20010101)91:1<106::aid-cncr14>3.0.co;2-2http://dx.doi.org/10.1002/1097-0142(20010101)91:1<106::aid-cncr14>3.0.co;2-2.
Yan FJ, Wang X, Wang SE, et al. C-Jun/C7ORF41/NF-κB axis mediates hepatic inflammation and lipid accumulation in NAFLD. Biochem J2020; 477(3):691-708. doi: 10.1042/bcj20190799http://dx.doi.org/10.1042/bcj20190799.
Maxwell MA, Muscat GE. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal2006; 4:e002. doi: 10.1621/nrs.04002http://dx.doi.org/10.1621/nrs.04002.
Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol2010; 30(8):1535-41. doi: 10.1161/atvbaha.109.191163http://dx.doi.org/10.1161/atvbaha.109.191163.
Liang H, Xie X, Song X, et al. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro and in vivo. FEBS Lett2019; 593(10):1061-71. doi: 10.1002/1873-3468.13384http://dx.doi.org/10.1002/1873-3468.13384.
Chao LC, Wroblewski K, Zhang Z, et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes2009; 58(12):2788-96. doi: 10.2337/db09-0763http://dx.doi.org/10.2337/db09-0763.
Chen J, Huang XR, Yang F, et al. Single-cell RNA sequencing identified novel Nr4a1(+) Ear2(+) anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN). Adv Sci (Weinh)2022; 9(18):e2200668. doi: 10.1002/advs.202200668http://dx.doi.org/10.1002/advs.202200668.
Markosyan N, Li J, Sun YH, et al. Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest2019; 129(9):3594-609. doi: 10.1172/jci127755http://dx.doi.org/10.1172/jci127755.
Chan PC, Liao MT, Hsieh PS. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance. Int J Mol Sci2019; 20(13):3115. doi: 10.3390/ijms20133115http://dx.doi.org/10.3390/ijms20133115.
Echizen K, Hirose O, Maeda Y, et al. Inflammation in gastric cancer: interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci2016; 107(4):391-7. doi: 10.1111/cas.12901http://dx.doi.org/10.1111/cas.12901.
Hu Q, Wei S, Wen J, et al. Network pharmacology reveals the multiple mechanisms of Xiaochaihu decoction in the treatment of non-alcoholic fatty liver disease. BioData Min2020; 13:11. doi: 10.1186/s13040-020-00224-9http://dx.doi.org/10.1186/s13040-020-00224-9.
Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest2003; 112(12):1821-30. doi: 10.1172/jci19451http://dx.doi.org/10.1172/jci19451.
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol2018; 68(2):238-50. doi: 10.1016/j.jhep.2017.11.012http://dx.doi.org/10.1016/j.jhep.2017.11.012.
Weisberg SP, Mccann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest2003; 112(12):1796-808. doi: 10.1172/jci19246http://dx.doi.org/10.1172/jci19246.
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest2007; 117(1):175-84. doi: 10.1172/jci29881http://dx.doi.org/10.1172/jci29881.
Rensen SS, Slaats Y, Nijhuis J, et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol2009; 175(4):1473-82. doi: 10.2353/ajpath.2009.080999http://dx.doi.org/10.2353/ajpath.2009.080999.
Hirsova P, Bamidele AO, Wang H, et al. Emerging roles of T cells in the pathogenesis of nonalcoholic steatohepatitis and hepatocellular carcinoma. Front Endocrinol (Lausanne)2021; 12:760860. doi: 10.3389/fendo.2021.760860http://dx.doi.org/10.3389/fendo.2021.760860.
Publicity Resources
Related Articles
Related Author
Related Institution