FOLLOWUS
Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou215000, Jiangsu, China
E-mail: fxu8563@163.com
Published:31 December 2024,
Published Online:23 December 2024,
Received:05 August 2024,
Accepted:2024-11-12
Scan QR Code
李鹏飞,路鑫,周雨倩等.系统免疫炎症指数、全身炎症综合指数及系统炎症反应指数对重症创伤后下肢深静脉血栓的预测价值[J].中国医学科学杂志(英文),2024,39(04):241-248.
Li Peng-Fei,Lu Xin,Zhou Yu-Qian,et al.Predictive Value of Systemic Immune Inflammation Index, Aggregate Index of Systemic Inflammation, and Systemic Inflammation Response Index in Lower Extremity Deep Venous Thrombosis Following Severe Trauma[J].Chinese Medical Sciences Journal,2024,39(04):241-248.
李鹏飞,路鑫,周雨倩等.系统免疫炎症指数、全身炎症综合指数及系统炎症反应指数对重症创伤后下肢深静脉血栓的预测价值[J].中国医学科学杂志(英文),2024,39(04):241-248. DOI: 10.24920/004411.
Li Peng-Fei,Lu Xin,Zhou Yu-Qian,et al.Predictive Value of Systemic Immune Inflammation Index, Aggregate Index of Systemic Inflammation, and Systemic Inflammation Response Index in Lower Extremity Deep Venous Thrombosis Following Severe Trauma[J].Chinese Medical Sciences Journal,2024,39(04):241-248. DOI: 10.24920/004411.
目的
2
静脉血栓栓塞症是多发伤后常见的并发症之一,是导致患者预后不良的重要因素。本研究旨在探讨重症创伤患者发生下肢深静脉血栓(lower extremity deep venous thrombosis,LEDVT)的危险因素,并评估这些危险因素对LEDVT的预测价值。
方法
2
本研究为回顾性、单中心观察性研究。研究对象为2022年1月至2024年5月被收住于苏州大学附属第一医院创伤ICU的重症创伤患者。根据受伤至伤后30天内的超声检查结果,将发生LEDVT的患者纳入LEDVT组,未发生LEDVT的患者纳入NLEDVT组。入院时收集患者的人口学、临床和实验室检查数据。采用多因素逻辑回归识别LEDVT的危险因素,并利用受试者特征曲线(receiver operating characteristic,ROC)评估模型的整体拟合效果。
结果
2
LEDVT组纳入56例患者,NLEDVT组纳入81例患者。年龄、全身炎症综合指数(Aggregate Index of Systemic Inflammation,AISI),系统炎症反应指数(Systemtic Immune Inflammation,SIRI),ICU住院时间及白蛋白是LEDVT的独立危险因素(
P
< 0.05)。这些指标的ROC曲线下面积分别为0.604,0.657,0.694,0.668和0.405。综合分析年龄、SIRI、AISI及白蛋白对重症创伤患者发生LEDVT的预测效能,结果显示ROC曲线下面积为0.805(95%CI:0.73,0.88,
P
= 0.037)。
结论
2
综合年龄、SIRI、AISI和白蛋白的分析模型对重症创伤患者发生LEDVT具有预测价值。
Objective
2
Venous thromboembolism is a highly prevalent condition after polytrauma
and recognized as an important factor contributing to poor prognosis. The aim of this study was to investigate the risk factors for lower extremity deep venous thrombosis (LEDVT) in a severely traumatized population and to evaluate their predictive value for LEDVT.
Methods
2
This was a retrospective
single-center observational study. All subjects were severely traumatized patients who were admitted to the Traumatic Intensive Care Unit from January 2021 to May 2024. Based on Doppler ultrasound findings of both lower extremities from the time of injury to 30 days post-injury
patients who developed LEDVT were enrolled in the LEDVT group
and those who did not develop LEDVT were enrolled in the NLEDVT group. Demographic
clinical
and laboratory data were collected upon admission. Multivariable logistic regression analysis was performed to identify risk factors for LEDVT. Receiver operating characteristic (ROC) curve was used to evaluate the overall fit of the final model.
Results
2
There were 56 patients enrolled in the LEDVT group and 81 patients in the NLEDVT group.Age
Aggregate Index of Systemic Inflammation (AISI)
Systemic Inflammation Response Index (SIRI)
ICU length of stay
and albumin were identified as independent risk factors for LEDVT (all
P
<
0.05). The area under their ROC curves were 0.604
0.657
0.694
0.668
and 0.405
respectively. Combined model for early clinical prediction of LEDVT in severely traumatized patients by age
SIRI
AISI
and albumin resulted in an area under the ROC curve of 0.805 (95%
CI
: 0.73-0.88
SE
= 0.037).
Conclusion
2
The combination of age
SIRI
AISI
and albumin has a predictive value for LEDVT in severely traumatized patients.
重症创伤系统免疫炎症指数全身炎症综合指数系统炎症反应指数下肢深静脉血栓
severe traumaSystemtic Immune Inflammation IndexAggregate Index of Systemic InflammationSystemic Inflammation Response Indexlower extremity deep venous thrombosis
Tagalakis V, Patenaude V, Kahn SR, et al. Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE Study Cohort. Am J Med2013; 126(9):832.e13-21. doi: 10.1016/j.amjmed.2013.02.024http://dx.doi.org/10.1016/j.amjmed.2013.02.024.
Haas S. The role of low molecular weight heparins for venous thromboembolism prevention in medical patients-what is new in 2019?Hamostaseologie2019; 39(1):62-6. doi: 10.1055/s-0038-1677522http://dx.doi.org/10.1055/s-0038-1677522.
Chopard R, Albertsen IE, Piazza G. Diagnosis and treatment of lower extremity venous thromboembolism: a review. JAMA2020; 324(17):1765-76. doi: 10.1001/jama.2020.17272http://dx.doi.org/10.1001/jama.2020.17272.
Geerts WH, Code KI, Jay RM, et al. A prospective study of venous thromboembolism after major trauma. N Engl J Med1994; 331(24):1601-6. doi: 10.1056/NEJM199412153312401http://dx.doi.org/10.1056/NEJM199412153312401.
Ruskin KJ. Deep vein thrombosis and venous thromboembolism in trauma. Curr Opin Anaesthesiol2018; 31(2):215-8. doi: 10.1097/ACO.0000000000000567http://dx.doi.org/10.1097/ACO.0000000000000567.
Budnik I, Brill A. Immune factors in deep vein thrombosis initiation. Trends Immunol2018; 39(8):610-23. doi: 10.1016/j.it.2018.04.010http://dx.doi.org/10.1016/j.it.2018.04.010.
Mukhopadhyay S, Johnson TA, Duru N, et al. Fibrinolysis and inflammation in venous thrombus resolution. Front Immunol2019; 10:1348. doi: 10.3389/fimmu.2019.01348http://dx.doi.org/10.3389/fimmu.2019.01348.
Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: proposed immune paradigms. Int J Mol Sci2020; 21(6):2080. doi: 10.3390/ijms21062080http://dx.doi.org/10.3390/ijms21062080.
Baker SP, O'Neill B, Haddon W, et al. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma1974; 14(3):187-96.
Smith BP, Goldberg AJ, Gaughan JP, et al. A comparison of injury severity score and new injury severity score after penetrating trauma: a prospective analysis. J Trauma Acute Care Surg2015; 79(2):269-74. doi: 10.1097/TA.0000000000000753http://dx.doi.org/10.1097/TA.0000000000000753.
Loftis KL, Price J, Gillich PJ. Evolution of the abbreviated injury scale: 1990-2015. Traffic Inj Prev2018; 19(sup2):S109-S13. doi: 10.1080/15389588.2018.1512747http://dx.doi.org/10.1080/15389588.2018.1512747.
Kantarcioglu B, Darki A, Siddiqui F, et al. Predictive role of blood cellular indices and their relationship with endogenous glycosaminoglycans as determinants of inflammatory biomarkers in pulmonary embolism. Clin Appl Thromb Hemost2022; 28:10760296221104801. doi: 10.1177/10760296221104801http://dx.doi.org/10.1177/10760296221104801.
Ding J, Song B, Xie X, et al. Inflammation in cerebral venous thrombosis. Front Immunol2022; 13:833490. doi: 10.3389/fimmu.2022.833490http://dx.doi.org/10.3389/fimmu.2022.833490.
Xing Y, Tian Z, Jiang Y, et al. A practical nomogram based on systemic inflammatory markers for predicting portal vein thrombosis in patients with liver cirrhosis. Ann Med2022; 54(1):302-9. doi: 10.1080/07853890.2022.2028893http://dx.doi.org/10.1080/07853890.2022.2028893.
Ye Z, Hu T, Wang J, et al. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: a systematic review and meta-analysis. Front Cardiovasc Med2022; 9:933913. doi: 10.3389/fcvm.2022.933913http://dx.doi.org/10.3389/fcvm.2022.933913.
Tuzimek A, Dziedzic EA, Beck J, et al. Correlations between acute coronary syndrome and novel inflammatory markers (systemic immune-inflammation index, systemic inflammation response index, and aggregate index of systemic inflammation) in patients with and without diabetes or prediabetes. J Inflamm Res2024; 17:2623-32. doi: 10.2147/JIR.S454117http://dx.doi.org/10.2147/JIR.S454117.
Zhao S, Dong S, Qin Y, et al. Inflammation index SIRI is associated with increased all-cause and cardiovascular mortality among patients with hypertension. Front Cardiovasc Med2022; 9:1066219. doi: 10.3389/fcvm.2022.1066219http://dx.doi.org/10.3389/fcvm.2022.1066219.
Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J2019; 54(3):1901647. doi: 10.1183/13993003.01647-2019http://dx.doi.org/10.1183/13993003.01647-2019.
Fois AG, Paliogiannis P, Scano V, et al. The systemic inflammation index on admission predicts in-hospital mortality in COVID-19 patients. Molecules2020; 25(23):5725. doi: 10.3390/molecules25235725http://dx.doi.org/10.3390/molecules25235725.
Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol2019; 72(6):558-69. doi: 10.4097/kja.19087http://dx.doi.org/10.4097/kja.19087.
Xue J, Ma D, Jiang J, et al. Diagnostic and prognostic value of immune/inflammation biomarkers for venous thromboembolism: is it reliable for clinical practice?J Inflamm Res2021; 14:5059-77. doi: 10.2147/JIR.S327014http://dx.doi.org/10.2147/JIR.S327014.
Mureșan AV, Hălmaciu I, Arbănași EM, et al. Prognostic nutritional index, controlling nutritional status (CONUT) score, and inflammatory biomarkers as predictors of deep vein thrombosis, acute pulmonary embolism, and mortality in COVID-19 patients. Diagnostics (Basel)2022; 12(11):2757. doi: 10.3390/diagnostics12112757http://dx.doi.org/10.3390/diagnostics12112757.
Zhang Y, Xing Z, Zhou K, et al. The predictive role of systemic inflammation response index (SIRI) in the prognosis of stroke patients. Clin Interv Aging2021; 16:1997-2007. doi: 10.2147/CIA.S339221http://dx.doi.org/10.2147/CIA.S339221.
Han X, Hofmann L, de la Fuente M, et al. PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood2020; 136(19):2217-28. doi: 10.1182/blood.2019004634http://dx.doi.org/10.1182/blood.2019004634.
Cronin M, Dengler N, Krauss ES, et al. Completion of the Updated Caprini Risk Assessment Model (2013 Version). Clin Appl Thromb Hemost2019; 25:1076029619838052. doi: 10.1177/1076029619838052http://dx.doi.org/10.1177/1076029619838052.
Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost2010; 8(11):2450-7. doi: 10.1111/j.1538-7836.2010.04044.xhttp://dx.doi.org/10.1111/j.1538-7836.2010.04044.x.
Park MS, Perkins SE, Spears GM, et al. Risk factors for venous thromboembolism after acute trauma: a population-based case-cohort study. Thromb Res2016; 144:40-5. doi: 10.1016/j.thromres.2016.03.026http://dx.doi.org/10.1016/j.thromres.2016.03.026.
Douillet D, Riou J, Penaloza A, et al. Risk of symptomatic venous thromboembolism in mild and moderate COVID-19: a comparison of two prospective European cohorts. Thromb Res2021; 208:4-10. doi: 10.1016/j.thromres.2021.10.001http://dx.doi.org/10.1016/j.thromres.2021.10.001.
Schina MJ, Neumyer MM, Healy DA, et al. Influence of age on venous physiologic parameters. J Vasc Surg1993; 18(5):749-52. doi: 10.1067/mva.1993.49980http://dx.doi.org/10.1067/mva.1993.49980.
Woller SC, Stevens SM, Jones JP, et al. Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients. Am J Med2011; 124(10):947-54.e2. doi: 10.1016/j.ammed.2011.06.004http://dx.doi.org/10.1016/j.ammed.2011.06.004.
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: a natural cargo. Int J Biol Macromol2019; 123:979-90. doi: 10.1016/j.ijbiomac.2018.11.053http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053.
Basili S, Carnevale R, Nocella C, et al. Serum albumin is inversely associated with portal vein thrombosis in cirrhosis. Hepatol Commun2019; 3(4):504-12. doi: 10.1002/hep4.1317http://dx.doi.org/10.1002/hep4.1317.
Violi F, Ceccarelli G, Loffredo L, et al. Albumin supplementation dampens hypercoagulability in COVID-19: a preliminary report. Thromb Haemost2021; 121(1):102-5. doi: 10.1055/s-0040-1721486http://dx.doi.org/10.1055/s-0040-1721486.
Zhai M, Cao S, Lu J, et al. The relationship between the fibrinogen to albumin ratio and early outcomes in patients with acute pontine infarction. Clin Appl Thromb Hemost2022; 28:10760296211067260. doi: 10.1177/10760296211067260http://dx.doi.org/10.1177/10760296211067260.
Wybranowski T, Napiórkowska M, Bosek M, et al. Study of albumin oxidation in COVID-19 pneumonia patients: possible mechanisms and consequences. Int J Mol Sci2022; 23(17):10103. doi: 10.3390/ijms231710103http://dx.doi.org/10.3390/ijms231710103.
Sumislawski JJ, Kornblith LZ, Conroy AS, et al. Dynamic coagulability after injury: is delaying venous thromboembolism chemoprophylaxis worth the wait?J Trauma Acute Care Surg2018; 85(5):907-14. doi: 10.1097/TA.0000000000002048http://dx.doi.org/10.1097/TA.0000000000002048.
van Deventer SJ, Büller HR, ten Cate JW, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood1990; 76(12):2520-6.
Jezovnik MK, Fareed J, Poredos P. Patients with a history of idiopathic deep venous thrombosis have long-term increased levels of inflammatory markers and markers of endothelial damage. Clin Appl Thromb Hemost2017; 23(2):124-31. doi: 10.1177/1076029616670259http://dx.doi.org/10.1177/1076029616670259.
Chen D, Luo J, Zhang C, et al. Venous thrombus embolism in polytrauma: special attention to patients with traumatic brain injury. J Clin Med2023; 12(5):1716. doi: 10.3390/jcm12051716http://dx.doi.org/10.3390/jcm12051716.
Wang Z, Chen X, Wu J, et al. Low mean platelet volume is associated with deep vein thrombosis in older patients with hip fracture. Clin Appl Thromb Hemost2022; 28:10760296221078837. doi: 10.1177/10760296221078837http://dx.doi.org/10.1177/10760296221078837.
Yang X, Zhao S, Wang S, et al. Systemic inflammation indicators and risk of incident arrhythmias in 478,524 individuals: evidence from the UK Biobank cohort. BMC Med2023; 21(1):76. doi: 10.1186/s12916-023-02770-5http://dx.doi.org/10.1186/s12916-023-02770-5.
Publicity Resources
Related Articles
Related Author
Related Institution