FOLLOWUS
1. 1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
2. 2Department of Cardiology, Center Hospital of Huanggang, Huanggang, Hubei 438000, China
3. 3Huanggang Institute of Translation Medicine, Huanggang, Hubei 438000, China
4. 4Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
5. 5Institute of Model Animal, Wuhan 430071, China
6. 6School of Basic Medical Science, Wuhan University, Wuhan 430071, China
7. 7Physical Examination Center, The Central Hospital of Wuhan, Wuhan 430014, China
8. 8Physical Examination Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
9. 9General Medical Department, CR & WISCO General Hospital, Wuhan 430000, China
10. 10Information Center, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
11. 11Department of Medical Examination Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
12. 12Department of Health Management, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, Hubei 432000, China
13. 13Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan 430070, China
14. 14Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, China
15. 15Chinese Medicine Center, Shiyan Renmin Hospital, Shiyan, Hubei 442000, China
16. 16Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410000, China
Zhigang She, E-mail: zgshe@whu.edu.cn, Tel: 86-27-68759885.
* E-mail: lihl@whu.edu.cn, Tel: 86-27-68759302;
Received:22 January 2022,
Accepted:2022-3-1,
Published Online:02 February 2022,
Published:30 June 2022
Scan QR Code
Xuewei Huang, Keqiong Deng, Juanjuan Qin, et al. Association Between Lipid Profiles and Left Ventricular Hypertrophy: New Evidence from a Retrospective Study[J]. Chinese medical sciences journal, 2022, 37(2): 103-117.
Xuewei Huang, Keqiong Deng, Juanjuan Qin, et al. Association Between Lipid Profiles and Left Ventricular Hypertrophy: New Evidence from a Retrospective Study[J]. Chinese medical sciences journal, 2022, 37(2): 103-117. DOI: 10.24920/004066.
目的
在中国一般人群中探究血脂与左心室肥厚之间的联系。
方法
为了探讨血脂与左心室肥厚之间的关系
我们开展了一项回顾性观察研究
纳入了以下血脂指标:甘油三酯、总胆固醇、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、非高密度脂蛋白胆固醇、载脂蛋白A-I、载脂蛋白B、脂蛋白(a)和3种复合血脂指标。首先
我们构建了一项横断面研究
其中包含两个人群
分别来自于北京市和全国其他10个省份。受试者为2009年至2018年期间在中国不同健康管理中心进行体检的成年人
共计309
400人。然后
我们将7475名进行过多次体检且最初没有左心室肥厚的受试者组建了一个纵向队列
以分析各血脂指标与新发左心室肥厚之间的关联。超声心动图被用于诊断左心室肥厚(左心室肥厚为室间隔或左心室后壁的舒张末期厚度
>
11mm)。在横断面研究中采用
Logistic
回归模型。在队列研究中采用
Cox
比例风险回归模型和限制性立方样条
Cox
比例风险回归模型。
结果
横断面研究显示:与对应血脂指标水平处于人群最低三分之一的受试者相比
甘油三酯(
OR
:1.250
95%
CI
:1.060~1.474)、高密度脂蛋白胆固醇(
OR
:0.780
95%
CI
:0.662~0.918)和脂蛋白(a)(
OR
:1.311
95%
CI
:1.115~1.541)水平处于最高三分之一的受试者的左心室肥厚风险增加。队列研究显示:相比于基线时对应血脂指标处于最低三分之一的受试者
甘油三酯(
HR
:3.277
95%
CI
:1.720~6.244)、高密度脂蛋白胆固醇(
HR
:0.516
95%
CI
:0.283~0.940)
非高密度脂蛋白胆固醇(
HR
:2.309
95%
CI
:1.296~4.112)及载脂蛋白B(
HR
:2.244
95%
CI
:1.251~4.032)水平处于最高三分之一的受试者发生左心室肥厚的风险增加。在向前逐步回归的
Cox
模型中
甘油三酯是进入最终模型的唯一脂质标志物。
结论
脂质水平
尤其是甘油三酯
与左心室肥厚有关。管控甘油三酯水平有可能成为阻止心室重塑的一种新途径
值得进一步深入研究。
Objective
To explore the association between lipid profiles and left ventricular hypertrophy in a Chinese general population.
Methods
We conducted a retrospective observational study to investigate the relationship between lipid markers [including triglycerides
total cholesterol
low-density lipoprotein cholesterol
high-density lipoprotein (HDL) cholesterol
non-HDL-cholesterol
apolipoprotein A-I
apolipoprotein B
lipoprotein[a]
and composite lipid profiles]
and left ventricular hypertrophy. A total of 309
400 participants of two populations (one from Beijing and another from nationwide) who underwent physical examinations at different health management centers between 2009 and 2018 in China were included in the cross-sectional study. 7
475 participants who had multiple physical examinations and initially did not have left ventricular hypertrophy constituted a longitudinal cohort to analyze the association between lipid markers and the new-onset of left ventricular hypertrophy. Left ventricular hypertrophy was measured by echocardiography and defined as an end-diastolic thickness of the interventricular septum or left ventricle posterior wall
>
11 mm. The
Logistic
regression model was used in the cross-sectional study.
Cox
model and
Cox
model with restricted cubic splines were used in the longitudinal cohort.
Results
In the cross-sectional study
for participants in the highest tertile of each lipid marker compared to the respective lowest
triglycerides [odds ratio (
OR
): 1.250
95%
CI
: 1.060 to 1.474]
HDL-cholesterol (
OR
: 0.780
95%
CI
: 0.662 to 0.918)
and lipoprotein(a) (
OR
: 1.311
95%
CI
: 1.115 to 1.541) had an association with left ventricular hypertrophy. In the longitudinal cohort
for participants in the highest tertile of each lipid marker at the baseline compared to the respective lowest
triglycerides [hazard ratio (
HR
): 3.277
95%
CI
: 1.720 to 6.244]
HDL-cholesterol (
HR
: 0.516
95%
CI
: 0.283 to 0.940)
non-HDL-cholesterol (
HR
: 2.309
95%
CI
: 1.296 to 4.112)
apolipoprotein B (
HR
: 2.244
95%
CI
: 1.251 to 4.032) showed an association with new-onset left ventricular hypertrophy. In the
Cox
model with forward stepwise selection
triglycerides were the only lipid markers entered into the final model.
Conclusion
Lipids levels
especially triglycerides
are associated with left ventricular hypertrophy. Controlling triglycerides level potentiate to be a strategy in harnessing cardiac remodeling but deserve to be further investigated.
Nakamura M , Sadoshima J . Mechanisms of physiological and pathological cardiac hypertrophy . Nat Rev Cardiol 2018 ; 15 ( 7 ): 387 - 407 . doi: 10.1038/s41569-018-0007-y https://dx.doi.org/10.1038/s41569-018-0007-y . DOI: 10.1038/s41569-018-0007-y http://doi.org/10.1038/s41569-018-0007-y https://doi.org/10.1038/s41569-018-0007-y https://doi.org/10.1038/s41569-018-0007-y
Gjesdal O , Bluemke DA , Lima JA . Cardiac remodeling at the population level-risk factors, screening, and outcomes . Nat Rev Cardiol 2011 ; 8 ( 12 ): 673 - 85 . doi: 10.1038/nrcardio.2011.154 https://dx.doi.org/10.1038/nrcardio.2011.154 . DOI: 10.1038/nrcardio.2011.154 http://doi.org/10.1038/nrcardio.2011.154
Bluemke DA , Kronmal RA , Lima JAC , et al . The Relationship of Left Ventricular Mass and Geometry to Incident Cardiovascular Events. The MESA (Multi-Ethnic Study of Atherosclerosis) Study . J Am Coll Cardiol 2008 ; 52 ( 25 ): 2148 - 55 . doi: 10.1016/j.jacc.2008.09.014 https://dx.doi.org/10.1016/j.jacc.2008.09.014 . DOI: 10.1016/j.jacc.2008.09.014 http://doi.org/10.1016/j.jacc.2008.09.014
Wang W , Hu M , Liu H , et al . Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease . Cell Metab 2021; 33 ( 10 ): 1943 - 56 .e2. doi: 10.1016/j.cmet.2021.08.005 https://dx.doi.org/10.1016/j.cmet.2021.08.005 . DOI: 10.1016/j.cmet.2021.08.005 http://doi.org/10.1016/j.cmet.2021.08.005 https://linkinghub.elsevier.com/retrieve/pii/S1550413121003685 https://linkinghub.elsevier.com/retrieve/pii/S1550413121003685
Schulze PC , Drosatos K , Goldberg IJ . Lipid use and misuse by the heart . Circ Res 2016 ; 118 ( 11 ): 1736 - 51 . doi: 10.1161/CIRCRESAHA.116.306842 https://dx.doi.org/10.1161/CIRCRESAHA.116.306842 . DOI: 10.1161/CIRCRESAHA.116.306842 http://doi.org/10.1161/CIRCRESAHA.116.306842 https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.116.306842 https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.116.306842
Pietri P , Georgiopoulos G , Tsiachris D , et al . Triglycerides are related to left ventricular mass in hypertensive patients independently of other cardiometabolic risk factors: the effect of gender . Sci Rep 2020 ; 10 ( 1 ): 1 - 7 . doi: 10.1038/s41598-020-70237-1 https://dx.doi.org/10.1038/s41598-020-70237-1 . DOI: 10.1038/s41598-020-70237-1 http://doi.org/10.1038/s41598-020-70237-1 https://doi.org/10.1038/s41598-020-70237-1 https://doi.org/10.1038/s41598-020-70237-1
Horio T , Miyazato J , Kamide K , et al . Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension . Am J Hypertens 2003 ; 16 ( 11 I ): 938 - 44 . doi: 10.1016/S0895-7061(03)01015-X https://dx.doi.org/10.1016/S0895-7061(03)01015-X . DOI: 10.1016/S0895-7061(03)01015-X http://doi.org/10.1016/S0895-7061(03)01015-X https://academic.oup.com/ajh/article-lookup/doi/10.1016/S0895-7061(03)01015-X https://academic.oup.com/ajh/article-lookup/doi/10.1016/S0895-7061(03)01015-X
Schillaci G , Vaudo G , Reboldi G , et al . Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension . J Hypertens 2001 ; 19 ( 12 ): 2265 - 70 . doi: 10.1097/00004872-200112000-00021 https://dx.doi.org/10.1097/00004872-200112000-00021 . DOI: 10.1097/00004872-200112000-00021 http://doi.org/10.1097/00004872-200112000-00021
Jullien V , Gosse P , Ansoborlo P , et al . Relationship between left ventricular mass and serum cholesterol level in the untreated hypertensive . J Hypertens 1998 ; 16 ( 7 ): 1043 - 7 . doi: 10.1097/00004872-199816070-00019 https://dx.doi.org/10.1097/00004872-199816070-00019 . DOI: 10.1097/00004872-199816070-00019 http://doi.org/10.1097/00004872-199816070-00019
Aung N , Sanghvi MM , Piechnik SK , et al . The effect of blood lipids on the left ventricle: a mendelian randomization study . J Am Coll Cardiol 2020 ; 76 ( 21 ): 2477 - 88 . doi: 10.1016/j.jacc.2020.09.583 https://dx.doi.org/10.1016/j.jacc.2020.09.583 . DOI: 10.1016/j.jacc.2020.09.583 http://doi.org/10.1016/j.jacc.2020.09.583
Mehta A , Shapiro MD . Apolipoproteins in vascular biology and atherosclerotic disease . Nat Rev Cardiol 2021 ; 19 ( 3 ): 168 - 79 . doi: 10.1038/s41569-021-00613-5 https://dx.doi.org/10.1038/s41569-021-00613-5 . DOI: 10.1038/s41569-021-00613-5 http://doi.org/10.1038/s41569-021-00613-5 https://doi.org/10.1038/s41569-021-00613-5 https://doi.org/10.1038/s41569-021-00613-5
Wang H , Li Z , Guo X , et al . The impact of nontraditional lipid profiles on left ventricular geometric abnormalities in general Chinese population . BMC Cardiovasc Disord 2018 ; 18 ( 1 ): 1 - 11 . doi: 10.1186/s12872-018-0829-x https://dx.doi.org/10.1186/s12872-018-0829-x . DOI: 10.1186/s12872-018-0829-x http://doi.org/10.1186/s12872-018-0829-x https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0740-x https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0740-x
Di Bonito P , Moio N , Scilla C , et al . Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children . Diabetes Care 2012 ; 35 ( 1 ): 158 - 62 . doi: 10.2337/dc11-1456 https://dx.doi.org/10.2337/dc11-1456 . DOI: 10.2337/dc11-1456 http://doi.org/10.2337/dc11-1456 https://diabetesjournals.org/care/article/35/1/158/27320/Usefulness-of-the-High-Triglyceride-to-HDL https://diabetesjournals.org/care/article/35/1/158/27320/Usefulness-of-the-High-Triglyceride-to-HDL
Taddei C , Zhou B , Bixby H , et al . Repositioning of the global epicentre of non-optimal cholesterol . Nature 2020 ; 582 ( 7810 ): 73 - 7 . doi: 10.1038/s41586-020-2338-1 https://dx.doi.org/10.1038/s41586-020-2338-1 . DOI: 10.1038/s41586-020-2338-1 http://doi.org/10.1038/s41586-020-2338-1 https://doi.org/10.1038/s41586-020-2338-1 https://doi.org/10.1038/s41586-020-2338-1
Zhao D , Liu J , Wang M , et al . Epidemiology of cardiovascular disease in China: current features and implications . Nat Rev Cardiol 2019 ; 16 ( 4 ): 203 - 12 . doi: 10.1038/s41569-018-0119-4 https://dx.doi.org/10.1038/s41569-018-0119-4 . DOI: 10.1038/s41569-018-0119-4 http://doi.org/10.1038/s41569-018-0119-4 https://doi.org/10.1038/s41569-018-0119-4 https://doi.org/10.1038/s41569-018-0119-4
Zhao D . Epidemiological features of cardiovascular disease in Asia . JACC Asia 2021 ; 1 ( 1 ): 1 - 13 . doi: 10.1016/j.jacasi.2021.04.007 https://dx.doi.org/10.1016/j.jacasi.2021.04.007 . DOI: 10.1016/j.jacasi.2021.04.007 http://doi.org/10.1016/j.jacasi.2021.04.007 https://linkinghub.elsevier.com/retrieve/pii/S2772374721000193 https://linkinghub.elsevier.com/retrieve/pii/S2772374721000193
Kario K , Chia Y , Sukonthasarn A , et al . Diversity of and initiatives for hypertension management in Asia—Why we need the HOPE Asia Network . J Clin Hypertens 2020 ; 22 ( 3 ): 331 - 43 . doi: 10.1111/jch.13733 https://dx.doi.org/10.1111/jch.13733 . DOI: 10.1111/jch.13733 http://doi.org/10.1111/jch.13733 https://onlinelibrary.wiley.com/toc/17517176/22/3 https://onlinelibrary.wiley.com/toc/17517176/22/3
Kou S , Caballero L , Dulgheru R , et al . Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study . Eur Hear J Cardiovasc Imaging 2014 ; 15 ( 6 ): 680 - 90 . doi: 10.1093/ehjci/jet284 https://dx.doi.org/10.1093/ehjci/jet284 . DOI: 10.1093/ehjci/jet284 http://doi.org/10.1093/ehjci/jet284
Sun NL , Jaw-Wen C , Wang JG , et al . Expert consensus on diagnosis and treatment of hypertension complicated with left ventricular hypertrophy in Asian . Chin J Hypertens 2016 ; 24 ( 7 ): 619 - 27 . doi: 10.16439/j.cnki.1673-7245.2016.07.008 https://dx.doi.org/10.16439/j.cnki.1673-7245.2016.07.008 . DOI: 10.16439/j.cnki.1673-7245.2016.07.008 http://doi.org/10.16439/j.cnki.1673-7245.2016.07.008
Joint Committee Issued Chinese Guideline for the Management of Dyslipidemia in Adults . 2016 Chinese Guideline for the Management of Dyslipidemia in Adults . Zhonghua Xin Xue Guan Bing Za Zhi 2016; 44 ( 10 ): 833 - 53 . doi: 10.3760/cma.j.issn.0253-3758.2016.10.005 https://dx.doi.org/10.3760/cma.j.issn.0253-3758.2016.10.005 . DOI: 10.3760/cma.j.issn.0253-3758.2016.10.005 http://doi.org/10.3760/cma.j.issn.0253-3758.2016.10.005
Wu Y . Overweight and obesity in China . BMJ 2006 ; 333 ( 7564 ): 362 - 3 . doi: 10.1136/bmj.333.7564.362 https://dx.doi.org/10.1136/bmj.333.7564.362 . DOI: 10.1136/bmj.333.7564.362 http://doi.org/10.1136/bmj.333.7564.362 https://www.bmj.com/lookup/doi/10.1136/bmj.333.7564.362 https://www.bmj.com/lookup/doi/10.1136/bmj.333.7564.362
Joint Committee for Guideline Revision . 2018 Chinese Guidelines for Prevention and Treatment of Hypertension—A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension . J Geriatr Cardiol 2019; 16 ( 3 ): 182 - 241 . doi: 10.11909/j.issn.1671-5411.2019.03.014 https://dx.doi.org/10.11909/j.issn.1671-5411.2019.03.014 . DOI: 10.11909/j.issn.1671-5411.2019.03.014 http://doi.org/10.11909/j.issn.1671-5411.2019.03.014
Chinese Elderly Type 2 Diabetes Prevention and Treatment of Clinical Guidelines Writing Group, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Society, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Health Care Society, Geriatric Professional Committee of Beijing Medical Award Foundation, National Clinical Medical Research Center for Geriatric Diseases (PLA General Hospital) . Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition). Zhonghua Nei Ke Za Zhi 2022; 61(1):12-50. Chinese. doi: 10.3760/cma.j.cn112138-20211027-00751 https://dx.doi.org/10.3760/cma.j.cn112138-20211027-00751 . DOI: 10.3760/cma.j.cn112138-20211027-00751 http://doi.org/10.3760/cma.j.cn112138-20211027-00751
Matthews DR , Hosker JP , Rudenski AS , et al . Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man . Diabetologia 1985 ; 28 ( 7 ): 412 - 9 . doi: 10.1007/BF00280883 https://dx.doi.org/10.1007/BF00280883 . DOI: 10.1007/BF00280883 http://doi.org/10.1007/BF00280883
Zhu L , She ZG , Cheng X , et al . Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes . Cell Metab 2020 ; 31(6): 1068 - 77 . e3 . doi: 10.1016/j.cmet.2020.04.021 https://dx.doi.org/10.1016/j.cmet.2020.04.021 . DOI: 10.1016/j.cmet.2020.04.021 http://doi.org/10.1016/j.cmet.2020.04.021
Waljee AK , Mukherjee A , Singal AG , et al . Comparison of imputation methods for missing laboratory data in medicine . BMJ Open 2013 ; 3 ( 8 ): e002847 . doi: 10.1136/bmjopen-2013-002847 https://dx.doi.org/10.1136/bmjopen-2013-002847 . DOI: 10.1136/bmjopen-2013-002847 http://doi.org/10.1136/bmjopen-2013-002847 https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2013-002847 https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2013-002847
Savage DB , Petersen KF , Shulman GI . Disordered lipid metabolism and the pathogenesis of insulin resistance . Physiol Rev 2007 ; 87 ( 2 ): 507 - 20 . doi: 10.1152/physrev.00024.2006 https://dx.doi.org/10.1152/physrev.00024.2006 . DOI: 10.1152/physrev.00024.2006 http://doi.org/10.1152/physrev.00024.2006
Ng ACT , Delgado V , Borlaug BA , et al . Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging . Nat Rev Cardiol 2021 ; 18 ( 4 ): 291 - 304 . doi: 10.1038/s41569-020-00465-5 https://dx.doi.org/10.1038/s41569-020-00465-5 . DOI: 10.1038/s41569-020-00465-5 http://doi.org/10.1038/s41569-020-00465-5 https://doi.org/10.1038/s41569-020-00465-5 https://doi.org/10.1038/s41569-020-00465-5
Pirillo A , Casula M , Olmastroni E , et al . Global epidemiology of dyslipidaemias . Nat Rev Cardiol 2021 ; 18 ( 10 ): 689 - 700 . doi: 10.1038/s41569-021-00541-4 https://dx.doi.org/10.1038/s41569-021-00541-4 . DOI: 10.1038/s41569-021-00541-4 http://doi.org/10.1038/s41569-021-00541-4
Shang R , Rodrigues B . Lipoprotein lipase and its delivery of fatty acids to the heart . Biomolecules 2021 ; 11 ( 7 ): 1 - 11 . doi: 10.3390/biom11071016 https://dx.doi.org/10.3390/biom11071016 . DOI: 10.3390/biom11071016 http://doi.org/10.3390/biom11071016 https://www.mdpi.com/2218-273X/11/1/1 https://www.mdpi.com/2218-273X/11/1/1
Zechner R , Madeo F , Kratky D . Cytosolic lipolysis and lipophagy: two sides of the same coin . Nat Rev Mol Cell Biol 2017 ; 18 ( 11 ): 671 - 84 . doi: 10.1038/nrm.2017.76 https://dx.doi.org/10.1038/nrm.2017.76 . DOI: 10.1038/nrm.2017.76 http://doi.org/10.1038/nrm.2017.76
Stanley WC , Recchia FA , Lopaschuk GD . Myocardial substrate metabolism in the normal and failing heart . Physiol Rev 2005 ; 85 ( 3 ): 1093 - 129 . doi: 10.1152/physrev.00006.2004 https://dx.doi.org/10.1152/physrev.00006.2004 . DOI: 10.1152/physrev.00006.2004 http://doi.org/10.1152/physrev.00006.2004 https://www.physiology.org/doi/10.1152/physrev.00006.2004 https://www.physiology.org/doi/10.1152/physrev.00006.2004
Goldberg IJ , Trent CM , Schulze PC . Lipid metabolism and toxicity in the heart . Cell Metab 2012 ; 15 ( 6 ): 805 - 12 . doi: 10.1016/j.cmet.2012.04.006 https://dx.doi.org/10.1016/j.cmet.2012.04.006 . DOI: 10.1016/j.cmet.2012.04.006 http://doi.org/10.1016/j.cmet.2012.04.006
Bertero E , Maack C . Metabolic remodelling in heart failure . Nat Rev Cardiol 2018 ; 15 ( 8 ): 457 - 70 . doi: 10.1038/s41569-018-0044-6 https://dx.doi.org/10.1038/s41569-018-0044-6 . DOI: 10.1038/s41569-018-0044-6 http://doi.org/10.1038/s41569-018-0044-6 https://doi.org/10.1038/s41569-018-0044-6 https://doi.org/10.1038/s41569-018-0044-6
Szczepaniak LS , Victor RG , Orci L , et al . Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America . Circ Res 2007 ; 101 ( 8 ): 759 - 67 . doi: 10.1161/CIRCRESAHA.107.160457 https://dx.doi.org/10.1161/CIRCRESAHA.107.160457 . DOI: 10.1161/CIRCRESAHA.107.160457 http://doi.org/10.1161/CIRCRESAHA.107.160457
Liu L , Shi X , Bharadwaj KG , et al . DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity . J Biol Chem 2009 ; 284 ( 52 ): 36312 - 23 . doi: 10.1074/jbc.M109.049817 https://dx.doi.org/10.1074/jbc.M109.049817 . DOI: 10.1074/jbc.M109.049817 http://doi.org/10.1074/jbc.M109.049817
Listenberger LL , Han X , Lewis SE , et al . Triglyceride accumulation protects against fatty acid-induced lipotoxicity . Proc Natl Acad Sci 2003 ; 100 ( 6 ): 3077 - 82 . doi: 10.1073/pnas.0630588100 https://dx.doi.org/10.1073/pnas.0630588100 . DOI: 10.1073/pnas.0630588100 http://doi.org/10.1073/pnas.0630588100 https://pnas.org/doi/full/10.1073/pnas.0630588100 https://pnas.org/doi/full/10.1073/pnas.0630588100
Lu Y , Zhang H , Lu J , et al . Prevalence of dyslipidemia and availability of lipid-lowering medications among primary health care settings in China . JAMA Netw Open 2021 ; 4 ( 9 ): e2127573 . doi: 10.1001/jamanetworkopen.2021.27573 https://dx.doi.org/10.1001/jamanetworkopen.2021.27573 . DOI: 10.1001/jamanetworkopen.2021.27573 http://doi.org/10.1001/jamanetworkopen.2021.27573 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2784557 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2784557
Libby P . The changing landscape of atherosclerosis . Nature 2021 ; 592 ( 7855 ): 524 - 33 . doi: 10.1038/s41586-021-03392-8 https://dx.doi.org/10.1038/s41586-021-03392-8 . DOI: 10.1038/s41586-021-03392-8 http://doi.org/10.1038/s41586-021-03392-8 https://doi.org/10.1038/s41586-021-03392-8 https://doi.org/10.1038/s41586-021-03392-8
Raposeiras-Roubin S , Rosselló X , Oliva B , et al . Triglycerides and residual atherosclerotic risk . J Am Coll Cardiol 2021 ; 77 ( 24 ): 3031 - 41 . doi: 10.1016/j.jacc.2021.04.059 https://dx.doi.org/10.1016/j.jacc.2021.04.059 . DOI: 10.1016/j.jacc.2021.04.059 http://doi.org/10.1016/j.jacc.2021.04.059
Bhatt DL , Steg PG , Miller M , et al . Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia . N Engl J Med 2019 ; 380 ( 1 ): 11 - 22 . doi: 10.1056/nejmoa1812792 https://dx.doi.org/10.1056/nejmoa1812792 . DOI: 10.1056/nejmoa1812792 http://doi.org/10.1056/nejmoa1812792 http://www.nejm.org/doi/10.1056/NEJMoa1812792 http://www.nejm.org/doi/10.1056/NEJMoa1812792
Heydari B , Abdullah S , Pottala JV , et al . Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction . Circulation 2016 ; 134 ( 5 ): 378 - 91 . doi: 10.1161/CIRCULATIONAHA.115.019949 https://dx.doi.org/10.1161/CIRCULATIONAHA.115.019949 . DOI: 10.1161/CIRCULATIONAHA.115.019949 http://doi.org/10.1161/CIRCULATIONAHA.115.019949
Djoussé L , Cook NR , Kim E , et al . Supplementation with vitamin D and omega-3 fatty acids and incidence of heart failure hospitalization: vital-heart failure . Circulation 2020 ; 141(9): 784 - 6 . doi: 10.1161/CIRCULATIONAHA.119.044645 https://dx.doi.org/10.1161/CIRCULATIONAHA.119.044645 . DOI: 10.1161/CIRCULATIONAHA.119.044645 http://doi.org/10.1161/CIRCULATIONAHA.119.044645
Campos-Staffico AM , Costa APR , Carvalho LSF , et al . Omega-3 intake is associated with attenuated inflammatory response and cardiac remodeling after myocardial infarction . Nutr J 2019 ; 18 ( 1 ): 1 - 8 . doi: 10.1186/s12937-019-0455-1 https://dx.doi.org/10.1186/s12937-019-0455-1 . DOI: 10.1186/s12937-019-0455-1 http://doi.org/10.1186/s12937-019-0455-1
Block RC , Liu L , Herrington DM , et al . Predicting risk for incident heart failure with omega-3 fatty acids: from MESA . JACC Hear Fail 2019 ; 7 ( 8 ): 651 - 61 . doi: 10.1016/j.jchf.2019.03.008 https://dx.doi.org/10.1016/j.jchf.2019.03.008 . DOI: 10.1016/j.jchf.2019.03.008 http://doi.org/10.1016/j.jchf.2019.03.008
Zou J , Le K , Xu S , et al . Fenofibrate ameliorates cardiac hypertrophy by activation of peroxisome proliferator-activated receptor-α partly via preventing p65-NFκB binding to NFATc4 . Mol Cell Endocrinol 2013 ; 370(1-2): 103 - 12 . doi: 10.1016/j.mce.2013.03.006 https://dx.doi.org/10.1016/j.mce.2013.03.006 . DOI: 10.1016/j.mce.2013.03.006 http://doi.org/10.1016/j.mce.2013.03.006
Zhuang L , Mao Y , Liu Z , et al . FABP3 deficiency exacerbates metabolic derangement in cardiac hypertrophy and heart failure via PPARα pathway . Front Cardiovasc Med 2021 ; 8: 722908 . doi: 10.3389/fcvm.2021.722908 https://dx.doi.org/10.3389/fcvm.2021.722908 . DOI: 10.3389/fcvm.2021.722908 http://doi.org/10.3389/fcvm.2021.722908
Pownall HJ , Rosales C , Gillard BK , et al . High-density lipoproteins, reverse cholesterol transport and atherogenesis . Nat Rev Cardiol 2021 ; 18 ( 10 ): 712 - 23 . doi: 10.1038/s41569-021-00538-z https://dx.doi.org/10.1038/s41569-021-00538-z . DOI: 10.1038/s41569-021-00538-z http://doi.org/10.1038/s41569-021-00538-z
Patel R , Nagueh SF , Tsybouleva N , et al . Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy . Circulation 2001 ; 104 ( 3 ): 317 - 24 . doi: 10.1161/hc2801.094031 https://dx.doi.org/10.1161/hc2801.094031 . DOI: 10.1161/hc2801.094031 http://doi.org/10.1161/hc2801.094031
Chang SA , Kim YJ , Lee HW , et al . Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy . Hypertension 2009 ; 54 ( 3 ): 591 - 7 . doi: 10.1161/HYPERTENSIONAHA.109.131243 https://dx.doi.org/10.1161/HYPERTENSIONAHA.109.131243 . DOI: 10.1161/HYPERTENSIONAHA.109.131243 http://doi.org/10.1161/HYPERTENSIONAHA.109.131243 https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.109.131243 https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.109.131243
Kawel-Boehm N , Kronmal R , Eng J , et al . Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA) . Radiology 2019; 293 ( 1 ): 107 - 14 . doi: 10.1148/radiol.2019182871 https://dx.doi.org/10.1148/radiol.2019182871 . DOI: 10.1148/radiol.2019182871 http://doi.org/10.1148/radiol.2019182871 http://pubs.rsna.org/doi/10.1148/radiol.2019182871 http://pubs.rsna.org/doi/10.1148/radiol.2019182871
McDonagh TA , Metra M , Adamo M , et al . 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure . Eur Heart J 2021; 42 ( 36 ): 3599 - 726 . doi: 10.1093/eurheartj/ehab368 https://dx.doi.org/10.1093/eurheartj/ehab368 . DOI: 10.1093/eurheartj/ehab368 http://doi.org/10.1093/eurheartj/ehab368 https://academic.oup.com/eurheartj/article/42/36/3599/6358045 https://academic.oup.com/eurheartj/article/42/36/3599/6358045
Publicity Resources
Related Articles
Related Author
Related Institution