

FOLLOWUS
1. 1Department of Health Statistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
2. 2Department of Medical Imaging, Peking University First Hospital, Beijing 100034, China
Received:21 March 2022,
Accepted:2022-8-24,
Published Online:20 September 2022,
Published:30 September 2022
Scan QR Code
Chun Wang, Qinxue Chang, Xiaomeng Wang, et al. Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm[J]. Chinese medical sciences journal, 2022, 37(3): 210-217.
Chun Wang, Qinxue Chang, Xiaomeng Wang, et al. Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm[J]. Chinese medical sciences journal, 2022, 37(3): 210-217. DOI: 10.24920/004086.
目的
基于临床常用指标
采用机器学习方法构建前列腺癌风险预测模型
为前列腺癌的早期诊疗提供科学依据
评价人工智能技术在医疗健康数据平台下的应用价值。
方法
对国家临床医学科学数据中心提供的前列腺肿瘤预警数据集预处理后
使用平滑剪切绝对偏差(smoothly clipped absolute deviation
SCAD)算法筛选特征指标。采用随机森林(Radom forest
RF)、支持向量机(support vector machine
SVM)、反向传播(back propagation
BP)神经网络、卷积神经网络(convolutional neural network
CNN)4种模型预测前列腺癌发生风险
其中神经网络模型使用经SMOTE增强后数据拟合。不同模型的预测能力采用受试者操作特性(ROC)曲线下面积(area under the curve
AUC)进行比较。在确定最优模型后
使用Shiny开发前列腺癌风险预测在线平台。
结果
在预测变量中
除活检标本碎组织体积、血游离前列腺特异抗原(fPSA)外
无机磷、甘油三酯、游离钙等临床常用指标与前列腺癌也密切相关。在4种模型中
RF预测效果最好(准确率:96.80%;AUC:0.975
95%
CI
:0.964-0.986)
其次为BP神经网络(准确率:85.36%;AUC:0.892
95%
CI
:0.849-0.934)
SVM(准确率:82.67%;AUC:0.824
95%
CI
:0.805-0.844)与BP神经网络预测效果相近
CNN预测能力最低(准确率:72.37%;AUC:0.724
95%
CI
:0.670-0.779)。基于RF及预测指标成功开发了一种前列腺癌风险预测在线平台。
结论
本研究揭示了医疗信息化平台下传统机器学习方法和基础神经网络模型在疾病风险预测中的应用价值
为疑似前列腺癌并接受穿刺活检人群的前列腺癌预测提出了新思路。此外
开发在线预测系统有助于增强人工智能预测技术的实用性
使医疗应用更为便捷。
Objective
To build a prostate cancer (PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelligence (AI) technology under healthcare data platforms.
Methods
After preprocessing of the data from Population Health Data Archive
smuothly clipped absolute deviation (SCAD) was used to select features. Random forest (RF)
support vector machine (SVM)
back propagation neural network (BP)
and convolutional neural network (CNN) were used to predict the risk of PCa
among which BP and CNN were used on the enhanced data by SMOTE. The performances of models were compared using area under the curve (AUC) of the receiving operating characteristic curve. After the optimal model was selected
we used the Shiny to develop an online calculator for PCa risk prediction based on predictive indicators.
Results
Inorganic phosphorus
triglycerides
and calcium were closely related to PCa in addition to the volume of fragmented tissue and free prostate-specific antigen (PSA). Among the four models
RF had the best performance in predicting PCa (accuracy: 96.80%; AUC: 0.975
95%
CI
: 0.964-0.986). Followed by BP (accuracy: 85.36%; AUC: 0.892
95%
CI
: 0.849-0.934) and SVM (accuracy: 82.67%; AUC: 0.824
95%
CI
: 0.805-0.844). CNN performed worse (accuracy: 72.37%; AUC: 0.724
95%
CI
: 0.670-0.779). An online platform for PCa risk prediction was developed based on the RF model and the predictive indicators.
Conclusions
This study revealed the application value of traditional machine learning and deep learning models in disease risk prediction under healthcare data platform
proposed new ideas for PCa risk prediction in patients suspected for PCa and had undergone core needle biopsy. Besides
the online calculation may enhance the practicability of AI prediction technology and facilitate medical diagnosis.
Sung H , Ferlay J , Siegel RL , et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries . CA Cancer J Clin 2021 ; 71 ( 3 ): 209 - 49 . doi: 10.3322/caac.21660 https://dx.doi.org/10.3322/caac.21660 . DOI: 10.3322/caac.21660 http://doi.org/10.3322/caac.21660
Lee SE , Chung JS , Han BK , et al. Relationship of prostate-specific antigen and prostate volume in Korean men with biopsy-proven benign prostatic hyperplasia . Urology 2008 ; 71 ( 3 ): 395 - 8 . doi: 10.1016/j.urology.2007.10.019 https://dx.doi.org/10.1016/j.urology.2007.10.019 . DOI: 10.1016/j.urology.2007.10.019 http://doi.org/10.1016/j.urology.2007.10.019
Mousavi SM . Toward prostate cancer early detection in Iran . Asian Pac J Cancer Prev 2009 ; 10 ( 3 ): 413 - 8 .
The General Hospital of the People’s Liberation Army . Prostate Cancer Data Set. Population Health Data Archive PHDA , 2019 . CSTR: A0006.11.A0005.201905.000531.
Liu X , Cheng MH , Shi CG , et al. Variability of glomerular filtration rate estimation equations in elderly Chinese patients with chronic kidney disease . Clin Interv Aging 2012 ; 7 : 409 - 15 . doi: 10.2147/CIA.S36152 https://dx.doi.org/10.2147/CIA.S36152 . DOI: 10.2147/CIA.S36152 http://doi.org/10.2147/CIA.S36152
Taft LM , Evans RS , Shyu CR , et al . Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery . J Biomed Inform 2009 ; 42 ( 2 ): 356 - 64 . doi: 10.1016/j.jbi.2008.09.001 https://dx.doi.org/10.1016/j.jbi.2008.09.001 DOI: 10.1016/j.jbi.2008.09.001 http://doi.org/10.1016/j.jbi.2008.09.001
Toth R , Schiffmann H , Hube-Magg C , et al. Random forest-based modelling to detect biomarkers for prostate cancer progression . Clin Epigenetics 2019 ; 11 ( 1 ): 148 . doi: 10.1186/s13148-019-0736-8 https://dx.doi.org/10.1186/s13148-019-0736-8 . DOI: 10.1186/s13148-019-0736-8 http://doi.org/10.1186/s13148-019-0736-8
Lan L , Wang Z , Zhe SD , et al. Scaling up kernel SVM on limited resources: A low-rank linearization approach . IEEE Trans Med Imaging 2019 ; 30 ( 2 ): 369 - 78 . doi: 10.1109/TNNLS.2018.2838140 https://dx.doi.org/10.1109/TNNLS.2018.2838140 . DOI: 10.1109/TNNLS.2018.2838140 http://doi.org/10.1109/TNNLS.2018.2838140
Shin HC , Roth HR , Gao MC , et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning . IEEE Trans Med Imaging 2016 ; 35 ( 5 ): 1285 - 98 . doi: 10.1109/TMI.2016.2528162 https://dx.doi.org/10.1109/TMI.2016.2528162 . DOI: 10.1109/TMI.2016.2528162 http://doi.org/10.1109/TMI.2016.2528162 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42
Xie J . Study on the drying model of larch wood based on artificial neural network[dissertation] . Northeast Forestry University ; 2013 .
The Online Platform for Prostate Cancer Risk Prediction . Department of Epidemiology and Health Statistics, Tianjin Medical University; c2021 . Available from: https://pcarisk.shinyapps.io/pcapred/ https://pcarisk.shinyapps.io/pcapred/ https://pcarisk.shinyapps.io/pcapred/. Released:November 30, 2021 .
Lacher DA , Hughes JP . Total, free, and complexed prostate-specific antigen levels among US men, 2007-2010 . Clin Chim Acta 2015 ; 448 : 220 - 7 . doi: 10.1016/j.cca.2015.06.009 https://dx.doi.org/10.1016/j.cca.2015.06.009 . DOI: 10.1016/j.cca.2015.06.009 http://doi.org/10.1016/j.cca.2015.06.009
Ju HX , Wang T , Wang W , et al. A comparative study of prostate cancer prediction models . Data Knowl Discov 2021 ; 5 ( 09 ): 107 - 14 . doi: 10.11925/infotech.2096-3467.2020.1185 https://dx.doi.org/10.11925/infotech.2096-3467.2020.1185 . DOI: 10.11925/infotech.2096-3467.2020.1185 http://doi.org/10.11925/infotech.2096-3467.2020.1185
Wang YF , Wu H , Xue WG , et al. Classification prediction and analysis of cancer risk factors for prostate cancer and prostate hyperplasia . Acad J PLA Med Sch 2021 ; 42 ( 3 ): 277 - 81 , +305. Chinese. doi: 10.3969/j.issn.2095-5227.2021.03.008 https://dx.doi.org/10.3969/j.issn.2095-5227.2021.03.008 . DOI: 10.3969/j.issn.2095-5227.2021.03.008 http://doi.org/10.3969/j.issn.2095-5227.2021.03.008
Van Hemelrijck M , Garmo H , Holmberg L , et al. Prostate cancer risk in the Swedish AMORIS study: the interplay among triglycerides, total cholesterol, and glucose . Cancer 2011 ; 117 ( 10 ): 2086 - 95 . doi: 10.1002/cncr.25758 https://dx.doi.org/10.1002/cncr.25758 . DOI: 10.1002/cncr.25758 http://doi.org/10.1002/cncr.25758
Arthur R , Møller H , Garmo H , et al. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories . Cancer Med 2016 ; 5 ( 6 ): 1307 - 18 . doi: 10.1002/cam4.665 https://dx.doi.org/10.1002/cam4.665 . DOI: 10.1002/cam4.665 http://doi.org/10.1002/cam4.665 https://onlinelibrary.wiley.com/toc/20457634/5/6 https://onlinelibrary.wiley.com/toc/20457634/5/6
Srikrishna G . S100A8 and S100A9: new insights into their roles in malignancy . J Innate Immun 2012 ; 4 ( 1 ): 31 - 40 . doi: 10.1159/000330095 https://dx.doi.org/10.1159/000330095 . DOI: 10.1159/000330095 http://doi.org/10.1159/000330095
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621