FOLLOWUS
1. 1Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
2. 2Big Data Institute, Central South University, Changsha 410083, China
Received:26 August 2022,
Accepted:2022-12-22,
Published Online:24 February 2023,
Published:31 March 2023
Scan QR Code
Yu-Xia Guan, Ying An, Feng-Yi Guo, et al. Intelligent Electrocardiogram Analysis in Medicine: Data, Methods, and Applications[J]. Chinese medical sciences journal, 2023, 38(1): 38-48.
Yu-Xia Guan, Ying An, Feng-Yi Guo, et al. Intelligent Electrocardiogram Analysis in Medicine: Data, Methods, and Applications[J]. Chinese medical sciences journal, 2023, 38(1): 38-48. DOI: 10.24920/004160.
心电图(electrocardiogram,ECG)是一种低成本、简单、快速、无创的检查方法。它可以反映心脏的电活动,为整个身体的健康状况提供有价值的诊断线索。因此,ECG已广泛应用于各种生物医学领域,如心律失常检测、疾病特异性检测、死亡率预测、生物特征识别等。近年来,ECG相关的研究使用了各种公开可用的数据集,在使用的数据集、数据预处理方法、有针对性的挑战以及建模和分析技术方面存在许多差异。本文系统地总结和分析了基于心电图的自动分析方法和应用。具体而言,我们首先回顾了部分常用的ECG公共数据集,并概述了数据预处理过程。然后,我们介绍了心电信号的一些最广泛的应用,并分析了这些应用中所涉及的先进方法。最后,我们阐述了心电图分析的一些挑战,并提出了进一步研究的建议。
Electrocardiogram (ECG) is a low-cost
simple
fast
and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore
ECG has been widely used in various biomedical applications such as arrhythmia detection
disease-specific detection
mortality prediction
and biometric recognition. In recent years
ECG-related studies have been carried out using a variety of publicly available datasets
with many differences in the datasets used
data preprocessing methods
targeted challenges
and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically
we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally
we elucidated some of the challenges in ECG analysis and provided suggestions for further research.
Naz M , Shah JH , Khan MA , et al. From ECG signals to images: a transformation based approach for deep learning . Peer J Comput Sci 2021 ; 7 : e386 . doi: 10.7717/peerj-cs.386 https://dx.doi.org/10.7717/peerj-cs.386 . DOI: 10.7717/peerj-cs.386 http://doi.org/10.7717/peerj-cs.386
Liu W , Huang Q , Chang S , et al. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram . Biomed Signal Process Control 2018 ; 45 : 22 - 32 . doi: 10.1016/j.bspc.2018.05.013 https://dx.doi.org/10.1016/j.bspc.2018.05.013 . DOI: 10.1016/j.bspc.2018.05.013 http://doi.org/10.1016/j.bspc.2018.05.013 https://linkinghub.elsevier.com/retrieve/pii/S1746809418301150 https://linkinghub.elsevier.com/retrieve/pii/S1746809418301150
Raghunath S , Ulloa Cerna AE , Jing L , et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network . Nat Med 2020 ; 26 ( 6 ): 886 - 91 . doi: 10.1038/s41591-020-0870-z https://dx.doi.org/10.1038/s41591-020-0870-z . DOI: 10.1038/s41591-020-0870-z http://doi.org/10.1038/s41591-020-0870-z
Prabhakararao E , Dandapat S . Myocardial infarction severity stages classification from ECG signals using attentional recurrent neural network . IEEE Sens J 2020 ; 20 ( 15 ): 8711 - 20 . doi: 10.1109/jsen.2020.2984493 https://dx.doi.org/10.1109/jsen.2020.2984493 . DOI: 10.1109/jsen.2020.2984493 http://doi.org/10.1109/jsen.2020.2984493 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361
Zheng J , Zhang J , Danioko S , et al. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients . Sci Data 2020 ; 7 ( 1 ): 48 . doi: 10.1038/s41597-020-0386-x https://dx.doi.org/10.1038/s41597-020-0386-x . DOI: 10.1038/s41597-020-0386-x http://doi.org/10.1038/s41597-020-0386-x
Zheng J , Fu G , Anderson K , et al. A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients . Sci Data 2020 ; 7 ( 1 ): 98 . doi: 10.1038/s41597-020-0440-8 https://dx.doi.org/10.1038/s41597-020-0440-8 . DOI: 10.1038/s41597-020-0440-8 http://doi.org/10.1038/s41597-020-0440-8
Wagner P , Strodthoff N , Bousseljot RD , et al. PTB-XL, a large publicly available electrocardiography dataset . Sci Data 2020 ; 7 ( 1 ): 154 . doi: 10.1038/s41597-020-0495-6 https://dx.doi.org/10.1038/s41597-020-0495-6 . DOI: 10.1038/s41597-020-0495-6 http://doi.org/10.1038/s41597-020-0495-6
Dechazal P , O'Dwyer M , Reilly RB . Automatic classification of heartbeats using ECG morphology and heartbeat interval features . IEEE Trans Biomed Eng 2004 ; 51 ( 7 ): 1196 - 206 . doi: 10.1109/tbme.2004.827359 https://dx.doi.org/10.1109/tbme.2004.827359 . DOI: 10.1109/tbme.2004.827359 http://doi.org/10.1109/tbme.2004.827359 http://ieeexplore.ieee.org/document/1306572/ http://ieeexplore.ieee.org/document/1306572/
Han C , Shi L . ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG . Comput Methods Programs Biomed 2020 ; 185 : 105138 . doi: 10.1016/j.cmpb.2019.105138 https://dx.doi.org/10.1016/j.cmpb.2019.105138 . DOI: 10.1016/j.cmpb.2019.105138 http://doi.org/10.1016/j.cmpb.2019.105138 https://linkinghub.elsevier.com/retrieve/pii/S0169260719308995 https://linkinghub.elsevier.com/retrieve/pii/S0169260719308995
Rodríguez-Sotelo JL , Cuesta-Frau D , Castellanos-Dominguez G . Unsupervised classification of atrial heartbeats using a prematurity index and wave morphology features . Med Biol Eng Comput 2009 ; 47 ( 7 ): 731 - 41 . doi: 10.1007/s11517-009-0435-2 https://dx.doi.org/10.1007/s11517-009-0435-2 . DOI: 10.1007/s11517-009-0435-2 http://doi.org/10.1007/s11517-009-0435-2
Odinaka I , O'Sullivan JA , Sirevaag EJ , et al. Cardiovascular biometrics: combining mechanical and electrical signals . IEEE Trans Inf Forensics Secur 2015 ; 10 ( 1 ): 16 - 27 . doi: 10.1109/TIFS.2014.2361261 https://dx.doi.org/10.1109/TIFS.2014.2361261 . DOI: 10.1109/TIFS.2014.2361261 http://doi.org/10.1109/TIFS.2014.2361261 https://ieeexplore.ieee.org/document/6915726 https://ieeexplore.ieee.org/document/6915726
Pham T-H , Sree V , Mapes J , et al. A novel machine learning framework for automated detection of arrhythmias in ECG segments . J Ambient Intell Humaniz Comput 2021 ; 12 ( 11 ): 10145 - 62 . doi: 10.1007/s12652-020-02779-1 https://dx.doi.org/10.1007/s12652-020-02779-1 . DOI: 10.1007/s12652-020-02779-1 http://doi.org/10.1007/s12652-020-02779-1
Sidek KA , Khalil I , Jelinek HF , et al. ECG biometric with abnormal cardiac conditions in remote monitoring system . IEEE Trans Nucl Sci 2014 ; 44 ( 11 ): 1498 - 509 . doi: 10.1109/TSMC.2014.2336842 https://dx.doi.org/10.1109/TSMC.2014.2336842 . DOI: 10.1109/TSMC.2014.2336842 http://doi.org/10.1109/TSMC.2014.2336842
Min BS , Hyun C , Kyoung SM , et al. The complexity of pediatric multifocal atrial tachycardia and its prognostic factors. Korean Circ . J 2018 ; 48 ( 2 ): 148 - 58 . doi: 10.4070/kcj.2017.0179 https://dx.doi.org/10.4070/kcj.2017.0179 . DOI: 10.4070/kcj.2017.0179 http://doi.org/10.4070/kcj.2017.0179
Jain A , Nandakumar K , Ross A . Score normalization in multimodal biometric systems . Pattern Recognit 2013 ; 38 ( 12 ): 2270 - 85 . doi 10.1016/j.patcog.2005.01.012 https://dx.doi.org/10.1016/j.patcog.2005.01.012 DOI: 10.1016/j.patcog.2005.01.012 http://doi.org/10.1016/j.patcog.2005.01.012 https://linkinghub.elsevier.com/retrieve/pii/S0031320305000592 https://linkinghub.elsevier.com/retrieve/pii/S0031320305000592
Osowski S , Hoai LT , Markiewicz T . Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans . Biomed. Eng 2004 ; 51 ( 4 ): 582 - 9 . doi: 10.1109/tbme.2004.824138 https://dx.doi.org/10.1109/tbme.2004.824138 . DOI: 10.1109/tbme.2004.824138 http://doi.org/10.1109/tbme.2004.824138
Devi RL , Kalaivani V . Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG . J Supercomput 2020 ; 76 ( 9 ): 6533 - 44 . doi: 10.1007/s11227-019-02873-y https://dx.doi.org/10.1007/s11227-019-02873-y . DOI: 10.1007/s11227-019-02873-y http://doi.org/10.1007/s11227-019-02873-y
Dilmac S , Korurek M . ECG heart beat classification method based on modified ABC algorithm . Appl. Soft Comput 2015 ; 36 : 641 - 55 . doi: 10.1016/j.asoc.2015.07.010 https://dx.doi.org/10.1016/j.asoc.2015.07.010 DOI: 10.1016/j.asoc.2015.07.010 http://doi.org/10.1016/j.asoc.2015.07.010 https://linkinghub.elsevier.com/retrieve/pii/S1568494615004408 https://linkinghub.elsevier.com/retrieve/pii/S1568494615004408
Song C , Liu K , Zhang X , et al. An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model from ECG Signals . IEEE Trans Biomed Eng 2016 ; 63 ( 7 ): 1532 - 42 . doi: 10.1109/tbme.2015.2498199 https://dx.doi.org/10.1109/tbme.2015.2498199 . DOI: 10.1109/TBME.2015.2498199 http://doi.org/10.1109/TBME.2015.2498199
Gunal S , Ergin S , Gunal ES , et al. , editors. ECG classification using ensemble of features . 2013 47th Annual Conference on Information Sciences and Systems; 2013 March 20-2; Baltimore, MD, USA . New York : IEEE ; 2013 . p. 1 - 5 .
Lin CL , Wang JS , Chung PC . Mining physiological conditions from heart rate variability analysis . IEEE Comput Intell Mag 2010 ; 5 ( 1 ): 50 - 8 . doi: 10.1109/MCI.2009.935309 https://dx.doi.org/10.1109/MCI.2009.935309 . DOI: 10.1109/MCI.2009.935309 http://doi.org/10.1109/MCI.2009.935309
Fayn J . A classification tree approach for cardiac ischemia detection using spatiotemporal information from three standard ECG leads . IEEE Trans Biomed Eng 2010 ; 58 ( 1 ): 95 - 102 . doi: 10.1109/TBME.2010.2071872 https://dx.doi.org/10.1109/TBME.2010.2071872 . DOI: 10.1109/TBME.2010.2071872 http://doi.org/10.1109/TBME.2010.2071872 http://ieeexplore.ieee.org/document/5560777/ http://ieeexplore.ieee.org/document/5560777/
Khalaf AF , Owis MI , Yassine IA . A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst . Appl 2015 ; 42 ( 21 ): 8361 - 8 . doi: 10.1016/j.eswa.2015.06.046 https://dx.doi.org/10.1016/j.eswa.2015.06.046 DOI: 10.1016/j.eswa.2015.06.046 http://doi.org/10.1016/j.eswa.2015.06.046
Castillo E , Morales DP , Botella G , et al. Efficient wavelet-based ECG processing for single-lead FHR extraction. Digit Signal Process 2013 ; 23 ( 6 ): 1897 - 909 .doi: 10.1016/j.dsp.2013.07.010 https://dx.doi.org/10.1016/j.dsp.2013.07.010 . DOI: 10.1016/j.dsp.2013.07.010 http://doi.org/10.1016/j.dsp.2013.07.010
Sangaiah AK , Arumugam M , Bian G-B . An intelligent learning approach for improving ECG signal classification and arrhythmia analysis . Artif Intell Med 2020 ; 103 : 101788 . doi: 10.1016/j.artmed.2019.101788 https://dx.doi.org/10.1016/j.artmed.2019.101788 . DOI: 10.1016/j.artmed.2019.101788 http://doi.org/10.1016/j.artmed.2019.101788 https://linkinghub.elsevier.com/retrieve/pii/S0933365719303641 https://linkinghub.elsevier.com/retrieve/pii/S0933365719303641
Hannun AY , Rajpurkar P , Haghpanahi M , et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network . Nat. Med 2019 ; 25 ( 1 ): 65 - 9 . doi: 10.1038/s41591-018-0268-3 https://dx.doi.org/10.1038/s41591-018-0268-3 . DOI: 10.1038/s41591-018-0268-3 http://doi.org/10.1038/s41591-018-0268-3
Acharya UR , Fujita H , Lih OS , et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network . Inf. Sci 2017 ; 405 : 81 - 90 . doi: 10.1016/j.ins.2017.04.012 https://dx.doi.org/10.1016/j.ins.2017.04.012 . DOI: 10.1016/j.ins.2017.04.012 http://doi.org/10.1016/j.ins.2017.04.012 https://linkinghub.elsevier.com/retrieve/pii/S0020025517306539 https://linkinghub.elsevier.com/retrieve/pii/S0020025517306539
Zhou S , Tan B . Electrocardiogram soft computing using hybrid deep learning CNN-ELM . Appl. Soft Comput 2020 ; 86 : 105778 . doi: 10.1016/j.asoc.2019.105778 https://dx.doi.org/10.1016/j.asoc.2019.105778 . DOI: 10.1016/j.asoc.2019.105778 http://doi.org/10.1016/j.asoc.2019.105778 https://linkinghub.elsevier.com/retrieve/pii/S1568494619305599 https://linkinghub.elsevier.com/retrieve/pii/S1568494619305599
Alqudah AM , Qazan S , Al-Ebbini L , et al. ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures . J Ambient Intell Humaniz Comput . 2022 ; 13 : 4877 - 907 . doi: 10.1007/s12652-021-03247-0 https://dx.doi.org/10.1007/s12652-021-03247-0 . DOI: 10.1007/s12652-021-03247-0 http://doi.org/10.1007/s12652-021-03247-0
Ji TY , Wu QH . Broadband noise suppression and feature identification of ECG waveforms using mathematical morphology and embedding theorem . Comput Methods Programs Biomed 2013 ; 112 ( 3 ): 466 - 80 . doi: 10.1016/j.cmpb.2013.08.006 https://dx.doi.org/10.1016/j.cmpb.2013.08.006 . DOI: 10.1016/j.cmpb.2013.08.006 http://doi.org/10.1016/j.cmpb.2013.08.006 https://linkinghub.elsevier.com/retrieve/pii/S0169260713002848 https://linkinghub.elsevier.com/retrieve/pii/S0169260713002848
Zheng Z , Chen Z , Hu F , et al. An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology . Electronics 2020 ; 9 ( 1 ): 121 . doi: 10.3390/electronics9010121 https://dx.doi.org/10.3390/electronics9010121 . DOI: 10.3390/electronics9010121 http://doi.org/10.3390/electronics9010121
Ji Y , Zhang S , Xiao WJS . Electrocardiogram classification based on faster regions with convolutional neural network . Sensors 2019 ; 19 ( 11 ): 2558 . doi: 10.3390/s19112558 https://dx.doi.org/10.3390/s19112558 . DOI: 10.3390/s19112558 http://doi.org/10.3390/s19112558
Huang J , Chen B , Yao B , et al. ECG Arrhythmia classification using STFT-based spectrogram and convolutional neural network . IEEE Access 2019 ; 7 : 92871 - 80 . doi: 10.1109/access.2019.2928017 https://dx.doi.org/10.1109/access.2019.2928017 . DOI: 10.1109/access.2019.2928017 http://doi.org/10.1109/access.2019.2928017 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
Cao Q , Du N , Yu L , et al. Practical Fine-grained learning based anomaly classification for ECG image . Artif Intell Med 2021 ; 119 : 102130 . doi: 10.1016/j.artmed.2021.102130 https://dx.doi.org/10.1016/j.artmed.2021.102130 . DOI: 10.1016/j.artmed.2021.102130 http://doi.org/10.1016/j.artmed.2021.102130 https://linkinghub.elsevier.com/retrieve/pii/S0933365721001238 https://linkinghub.elsevier.com/retrieve/pii/S0933365721001238
Chen G , Hong Z , Guo Y , et al. A cascaded classifier for multi-lead ECG based on feature fusion . Comput Methods Programs Biomed 2019 ; 178 : 135 - 143 . doi: 10.1016/j.cmpb.2019.06.021 https://dx.doi.org/10.1016/j.cmpb.2019.06.021 DOI: 10.1016/j.cmpb.2019.06.021 http://doi.org/10.1016/j.cmpb.2019.06.021 https://linkinghub.elsevier.com/retrieve/pii/S0169260719305747 https://linkinghub.elsevier.com/retrieve/pii/S0169260719305747
Niu J , Tang Y , Sun Z , et al. Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks . IEEE J. Biomed. Health Inform 2020 ; 24 ( 5 ): 1321 - 32 . doi: 10.1109/jbhi.2019.2942938 https://dx.doi.org/10.1109/jbhi.2019.2942938 . DOI: 10.1109/jbhi.2019.2942938 http://doi.org/10.1109/jbhi.2019.2942938 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020
Murat F , Yildirim O , Talo M , et al. Exploring deep features and ECG attributes to detect cardiac rhythm classes . Knowl Based Syst 2021 ; 232 : 107473 . doi: 10.1016/j.knosys.2021.107473 https://dx.doi.org/10.1016/j.knosys.2021.107473 . DOI: 10.1016/j.knosys.2021.107473 http://doi.org/10.1016/j.knosys.2021.107473 https://linkinghub.elsevier.com/retrieve/pii/S0950705121007358 https://linkinghub.elsevier.com/retrieve/pii/S0950705121007358
Chen C , Hua Z , Zhang R , et al. Automated arrhythmia classification based on a combination network of CNN and LSTM . Biomed Signal Process Control 2020 ; 57 : 101819 . doi: 10.1016/j.bspc.2019.101819 https://dx.doi.org/10.1016/j.bspc.2019.101819 . DOI: 10.1016/j.bspc.2019.101819 http://doi.org/10.1016/j.bspc.2019.101819 https://linkinghub.elsevier.com/retrieve/pii/S1746809419304008 https://linkinghub.elsevier.com/retrieve/pii/S1746809419304008
Zhang J , Tian J , Cao Y , et al. Deep time-frequency representation and progressive decision fusion for ECG classification . Knowl Based Syst 2019 ; 190 : 105402 . doi: 10.1016/j.knosys.2019.105402 https://dx.doi.org/10.1016/j.knosys.2019.105402 . DOI: 10.1016/j.knosys.2019.105402 http://doi.org/10.1016/j.knosys.2019.105402 https://linkinghub.elsevier.com/retrieve/pii/S0950705119306422 https://linkinghub.elsevier.com/retrieve/pii/S0950705119306422
Wang R , Yao Q , Fan X , et al. , editors. Multi-class arrhythmia detection based on neural network with multi-stage features fusion . IEEE International Conference on Systems, Man and Cybernetics; 2019 Oct 6-9; Bari, Italy. New York: IEEE ; 2019 . p. 4082 - 4087 .
Moody GB , Mark RG . The impact of the MIT-BIH Arrhythmia Database . IEEE Eng Med Biomed Mag 2001 ; 20 ( 3 ): 45 - 50 . doi: 10.1109/51.932724 https://dx.doi.org/10.1109/51.932724 . DOI: 10.1109/51.932724 http://doi.org/10.1109/51.932724
Schläpfer J , Wellens HJ . Computer-interpreted electrocardiograms . J. Am. Coll. Cardiol 2017 ; 70 ( 9 ): 1183 - 92 . doi: 10.1016/j.jacc.2017.07.723 https://dx.doi.org/10.1016/j.jacc.2017.07.723 . DOI: S0735-1097(17)38794-6 http://doi.org/S0735-1097(17)38794-6
LeCun Y , Bengio Y , Hinton G . Deep learning . Nature 2015 ; 521 ( 7553 ): 436 - 44 . doi: 10.1038/nature14539 https://dx.doi.org/10.1038/nature14539 . DOI: 10.1038/nature14539 http://doi.org/10.1038/nature14539
Yao Q , Wang R , Fan X , et al. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network . Inf Fusion 2020 ; 53 : 174 - 182 . doi: 10.1016/j.inffus.2019.06.024 https://dx.doi.org/10.1016/j.inffus.2019.06.024 . DOI: 10.1016/j.inffus.2019.06.024 http://doi.org/10.1016/j.inffus.2019.06.024 https://linkinghub.elsevier.com/retrieve/pii/S1566253518307632 https://linkinghub.elsevier.com/retrieve/pii/S1566253518307632
Arif M , Malagore IA , Afsar FA . Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier . J Med Syst 2012 ; 36 ( 1 ): 279 - 89 . doi: 10.1007/s10916-010-9474-3 https://dx.doi.org/10.1007/s10916-010-9474-3 . DOI: 10.1007/s10916-010-9474-3 http://doi.org/10.1007/s10916-010-9474-3
Dohare AK , Kumar V , Kumar R . Detection of myocardial infarction in 12 lead ECG using support vector machine . Appl. Soft Comput 2018 ; 64 ( 1 ): 138 - 47 . doi: 10.1016/j.asoc.2017.12.001 https://dx.doi.org/10.1016/j.asoc.2017.12.001 . DOI: 10.1016/j.asoc.2017.12.001 http://doi.org/10.1016/j.asoc.2017.12.001 https://linkinghub.elsevier.com/retrieve/pii/S1568494617307159 https://linkinghub.elsevier.com/retrieve/pii/S1568494617307159
Ponikowski P , Anker SD , Alhabib KF , et al. Heart failure: preventing disease and death worldwide . ESC heart Fail 2014 ; 1 ( 1 ): 4 - 25 . doi: 10.1002/ehf2.12005 https://dx.doi.org/10.1002/ehf2.12005 . DOI: 10.1002/ehf2.12005 http://doi.org/10.1002/ehf2.12005
Kusuma S , Jothi KR . ECG signals-based automated diagnosis of congestive heart failure using Deep CNN and LSTM architecture . Biocybern Biomed Eng 2022 ; 42 ( 1 ): 247 - 57 . doi: https://doi.org/10.1016/j.bbe.2022.02.003 https://dx.doi.org/https://doi.org/10.1016/j.bbe.2022.02.003 . DOI: https://doi.org/10.1016/j.bbe.2022.02.003 http://doi.org/https://doi.org/10.1016/j.bbe.2022.02.003 https://linkinghub.elsevier.com/retrieve/pii/S0208521622000067 https://linkinghub.elsevier.com/retrieve/pii/S0208521622000067
Acharya UR , Fujita H , Oh SL , et al. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals . Appl. Intell 2019 ; 49 ( 1 ): 16 - 27 . doi: 10.1007/s10489-018-1179-1 https://dx.doi.org/10.1007/s10489-018-1179-1 . DOI: 10.1007/s10489-018-1179-1 http://doi.org/10.1007/s10489-018-1179-1
Charlton PH , Bonnici T , Tarassenko L , et al. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram . Physiol Meas 2020 ; 37 ( 4 ): 1232 - 41 .doi: 10.1109/CVPRW50498.2020.00160 https://dx.doi.org/10.1109/CVPRW50498.2020.00160 . DOI: 10.1109/CVPRW50498.2020.00160 http://doi.org/10.1109/CVPRW50498.2020.00160
Sohn K , Merchant FM , Sayadi O , et al. A novel point-of-care smartphone-based system for monitoring the cardiac and respiratory systems . Sci Rep 2017 ; 7 ( 1 ): 1 - 10 . doi: 10.1038/srep44946 https://dx.doi.org/10.1038/srep44946 . DOI: 10.1038/srep44946 http://doi.org/10.1038/srep44946
Varon C , Morales J , Lázaro J , et al. A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG . Sci Rep 2020 ; 10 ( 1 ): 1 - 14 . doi: 10.1038/s41598-020-62624-5 https://dx.doi.org/10.1038/s41598-020-62624-5 . DOI: 10.1038/s41598-020-62624-5 http://doi.org/10.1038/s41598-020-62624-5
Schramm Preetam J , Thomas Robert J . Assessment of therapeutic options for mild obstructive sleep apnea using cardiopulmonary coupling measures . J Clin Sleep Med 2012 ; 8 ( 03 ): 315 - 20 . doi: 10.5664/jcsm.1924 https://dx.doi.org/10.5664/jcsm.1924 . DOI: 10.5664/jcsm.1924 http://doi.org/10.5664/jcsm.1924 http://jcsm.aasm.org/doi/10.5664/jcsm.1924 http://jcsm.aasm.org/doi/10.5664/jcsm.1924
Yang AC , Yang C-H , Hong C-J , et al. Sleep state instabilities in major depressive disorder: Detection and quantification with electrocardiogram-based cardiopulmonary coupling analysis . Psychophysiology 2011 ; 48 ( 2 ): 285 - 91 . doi: https://doi.org/10.1111/j.1469-8986.2010.01060.x https://dx.doi.org/https://doi.org/10.1111/j.1469-8986.2010.01060.x . DOI: 10.1111/j.1469-8986.2010.01060.x http://doi.org/10.1111/j.1469-8986.2010.01060.x
Bsoul M , Minn H , Tamil L . Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Trans Nucl Sci 2011 ; 15 ( 3 ): 416 - 27 . doi: 10.1109/titb.2010.2087386 https://dx.doi.org/10.1109/titb.2010.2087386 . DOI: 10.1109/titb.2010.2087386 http://doi.org/10.1109/titb.2010.2087386
Varon C , Caicedo A , Testelmans D , et al. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG . IEEE Trans Biomed Eng 2015 ; 62 ( 9 ): 2269 - 78 . doi: 10.1109/TBME.2015.2422378 https://dx.doi.org/10.1109/TBME.2015.2422378 . DOI: 10.1109/TBME.2015.2422378 http://doi.org/10.1109/TBME.2015.2422378
Khandoker AH , Palaniswami M , Karmakar CK . Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings . IEEE Trans Inf Technol Biomed 2009 ; 13 ( 1 ): 37 - 48 . doi: 10.1109/TITB.2008.2004495 https://dx.doi.org/10.1109/TITB.2008.2004495 DOI: 10.1109/TITB.2008.2004495 http://doi.org/10.1109/TITB.2008.2004495 http://ieeexplore.ieee.org/document/4601477/ http://ieeexplore.ieee.org/document/4601477/
Nathala P , Salunkhe V , Samanapally H , et al. Electrocardiographic features and outcome: correlations in 124 hospitalized patients with COVID-19 and cardiovascular events . J. Cardiothorac. Vasc. Anesth 2022 ; 36 ( 8 ): 2927 - 34 . doi: 10.1053/j.jvca.2022.01.011 https://dx.doi.org/10.1053/j.jvca.2022.01.011 . DOI: 10.1053/j.jvca.2022.01.011 http://doi.org/10.1053/j.jvca.2022.01.011 https://linkinghub.elsevier.com/retrieve/pii/S1053077022000428 https://linkinghub.elsevier.com/retrieve/pii/S1053077022000428
Angeli F , Spanevello A , Ponti RD , et al. Electrocardiographic features of patients with COVID-19 pneumonia . European journal of internal medicine 2020 ; 78 ( 1 ): 101 - 6 . doi: 10.1016/j.ejim.2020.06.015 https://dx.doi.org/10.1016/j.ejim.2020.06.015 . DOI: 10.1016/j.ejim.2020.06.015 http://doi.org/10.1016/j.ejim.2020.06.015 https://linkinghub.elsevier.com/retrieve/pii/S0953620520302533 https://linkinghub.elsevier.com/retrieve/pii/S0953620520302533
Gur A , Ulutas Z . Characteristic electrocardiography findings of COVID-19 patients . Arch Iran Med 2021 ; 24 ( 9 ): 706 - 12 . doi: 10.34172/aim.2021.103 https://dx.doi.org/10.34172/aim.2021.103 . DOI: 10.34172/aim.2021.103 http://doi.org/10.34172/aim.2021.103
Rahman T , Akinbi A , Chowdhury MEH , et al. COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network . Health Inf. Sci. Syst 2022 ; 10 ( 1 ): 1 - 16 . doi: 10.1007/s13755-021-00169-1 https://dx.doi.org/10.1007/s13755-021-00169-1 . DOI: 10.1007/s13755-021-00169-1 http://doi.org/10.1007/s13755-021-00169-1
Du N , Cao Q , Yu L , et al. FM-ECG: A fine-grained multi-label framework for ECG image classification . Inf. Sci 2020 ; 549 ( 1 ) 164 - 77 . doi: 10.1016/j.ins.2020.10.014 https://dx.doi.org/10.1016/j.ins.2020.10.014 . DOI: 10.1016/j.ins.2020.10.014 http://doi.org/10.1016/j.ins.2020.10.014 https://linkinghub.elsevier.com/retrieve/pii/S0020025520310069 https://linkinghub.elsevier.com/retrieve/pii/S0020025520310069
Ozdemir MA , Ozdemir GD , Guren OJBMI , et al. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning. BMC Medical Inform . Decis. Mak 2021 ; 21 ( 1 ): 1 - 20 . doi: 10.1186/s12911-021-01521-x https://dx.doi.org/10.1186/s12911-021-01521-x . DOI: 10.1186/s12911-021-01521-x http://doi.org/10.1186/s12911-021-01521-x
Attallah O . An Intelligent ECG-Based Tool for Diagnosing COVID-19 via Ensemble Deep Learning Techniques . Biosensors 2022 ; 12 ( 5 ): 299 - 299 . doi: 10.3390/bios12050299 https://dx.doi.org/10.3390/bios12050299 . DOI: 10.3390/bios12050299 http://doi.org/10.3390/bios12050299 https://www.mdpi.com/2079-6374/12/5/299 https://www.mdpi.com/2079-6374/12/5/299
Carrarini C , Di Stefano V , Russo M , et al. ECG monitoring of post-stroke occurring arrhythmias: an observational study using 7-day Holter ECG . Sci. Rep 2022 ; 12 ( 1 ): 1 - 7 . doi: 10.1038/s41598-021-04285-6 https://dx.doi.org/10.1038/s41598-021-04285-6 . DOI: 10.1038/s41598-021-04285-6 http://doi.org/10.1038/s41598-021-04285-6
Rasmussen SM , Jensen MEK , Meyhoff CS , et al. , editors. Semi-supervised analysis of the electrocardiogram using deep generative models . 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE , 2021 : 1124 - 7 .
Zhang P , Chen Y , Lin F , et al. Semi-supervised learning for automatic atrial fibrillation detection in 24-hour Holter monitoring. IEEE J . Biomed. Health Inform 2022 ; 1 ( 1 ): 1 . doi: 10.1109/jbhi.2022.3173655 https://dx.doi.org/10.1109/jbhi.2022.3173655 . DOI: 10.1109/jbhi.2022.3173655 http://doi.org/10.1109/jbhi.2022.3173655
Cai Z , Xiong Z , Xu H , et al. Generative Adversarial Networks . Commun. ACM 2020 ; 63 ( 11 ): 139 - 44 . doi: https://doi.org/10.1145/3422622 https://dx.doi.org/https://doi.org/10.1145/3422622 . DOI: https://doi.org/10.1145/3422622 http://doi.org/https://doi.org/10.1145/3422622 https://dl.acm.org/doi/10.1145/3422622 https://dl.acm.org/doi/10.1145/3422622
Yoo D , Fan H , Boddeti VN , et al. Efficient K-Shot Learning with Regularized Deep Networks 2017 ; 32 ( 1 ). doi: 10.48550/arXiv.1710.02277 https://dx.doi.org/10.48550/arXiv.1710.02277 . DOI: 10.48550/arXiv.1710.02277 http://doi.org/10.48550/arXiv.1710.02277
Zang C , Pei M , Kong Y , editors . Few-shot human motion prediction via learning novel motion dynamics . Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence . Freiburg : Germany ; 2021 .p. 846 - 852 .
Kaur H , Pannu HS , Malhi AK . A Systematic review on imbalanced data challenges in machine learning . ACM Comput Surv 2020 ; 52 ( 4 ): 1 - 36 . doi: 10.1145/3343440 https://dx.doi.org/10.1145/3343440 . DOI: 10.1145/3343440 http://doi.org/10.1145/3343440
Xiong Y , Wang L , Wang Q , et al. Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification . Measurement 2022 ; 189 ( 1 ): 110471 . doi: https://doi.org/10.1016/j.measurement.2021.110471 https://dx.doi.org/https://doi.org/10.1016/j.measurement.2021.110471 . DOI: https://doi.org/10.1016/j.measurement.2021.110471 http://doi.org/https://doi.org/10.1016/j.measurement.2021.110471
Goodfellow I , Pouget-Abadie J , Mirza M , et al. Generative adversarial networks . Commun. ACM 2020 ; 63 ( 11 ): 139 - 44 . doi: 10.1145/3422622 https://dx.doi.org/10.1145/3422622 . DOI: 10.1145/3422622 http://doi.org/10.1145/3422622 https://dl.acm.org/doi/10.1145/3422622 https://dl.acm.org/doi/10.1145/3422622
Ma L , Fan SJBB . CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests . BMC Bioinform 2017 ; 18 ( 1 ): 1 - 18 . doi: 10.1186/s12859-017-1578-z https://dx.doi.org/10.1186/s12859-017-1578-z . DOI: 10.1186/s12859-017-1578-z http://doi.org/10.1186/s12859-017-1578-z
Chair JMJ , Clark K , Coleman E , et al. Appropriate intervention strategies for weight loss and prevention of weight regain for adults . Med Sci Sports Exerc 2001 ; 33 ( 12 ): 2145 - 56 . doi: 10.1097/00005768-200112000-00026 https://dx.doi.org/10.1097/00005768-200112000-00026 . DOI: 10.1097/00005768-200112000-00026 http://doi.org/10.1097/00005768-200112000-00026 http://journals.lww.com/00005768-200112000-00026 http://journals.lww.com/00005768-200112000-00026
Xie YX , Qiu M , Zhang H , et al. Gaussian distribution based oversampling for imbalanced data classification . IEEE Trans Knowl Data Eng 2020 ; 34 ( 2 ): 667 - 79 . doi: 10.1109/TKDE.2020.2985965 https://dx.doi.org/10.1109/TKDE.2020.2985965 DOI: 10.1109/TKDE.2020.2985965 http://doi.org/10.1109/TKDE.2020.2985965 https://ieeexplore.ieee.org/document/9063462/ https://ieeexplore.ieee.org/document/9063462/
He HL , Zhang WY , Zhang S . A novel ensemble method for credit scoring: adaption of different imbalance ratios. Expert Syst . Appl 2018 ; 98 ( 1 ): 105 - 17 . doi: 10.1016/j.eswa.2018.01.012 https://dx.doi.org/10.1016/j.eswa.2018.01.012 . DOI: 10.1016/j.eswa.2018.01.012 http://doi.org/10.1016/j.eswa.2018.01.012
Rudin C . Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead . Nat. Mach. Intell 2019 ; 1 ( 5 ): 206 - 15 . doi: 10.1038/s42256-019-0048-x https://dx.doi.org/10.1038/s42256-019-0048-x . DOI: 10.1038/s42256-019-0048-x http://doi.org/10.1038/s42256-019-0048-x
Jiang P , Zhang C , Hou Q , et al. LayerCAM: Exploring hierarchical class activation maps for localization . IEEE Trans Image Process 2021 ; 30 ( 1 ): 5875 - 5888 . doi: 10.1109/TIP.2021.3089943 https://dx.doi.org/10.1109/TIP.2021.3089943 . DOI: 10.1109/TIP.2021.3089943 http://doi.org/10.1109/TIP.2021.3089943 https://ieeexplore.ieee.org/document/9462463/ https://ieeexplore.ieee.org/document/9462463/
Ventura F , Cerquitelli T , Giacalone F . Black-box model explained through an assessment of its interpretable features . European Conference on Advances in Databases and Information Systems . 2018 . p. 138 - 149 .
Bai T , Zhang S , Egleston BL , et al. Interpretable representation learning for healthcare via capturing disease progression through time . KDD. 2018 Aug ; 2018 : 43 - 51 . doi: 10.1145/3219819.3219904 https://dx.doi.org/10.1145/3219819.3219904 . DOI: 10.1145/3219819.3219904 http://doi.org/10.1145/3219819.3219904
Hong S , Xiao C , Ma T , et al. , editors. MINA: multilevel knowledge-guided attention for modeling electrocardiography signals . Twenty-Eighth International Joint Conference on Artificial Intelligence; 2019 August 10-16; Macao ; 2019 .p.p. 16 - 20 .
Natarajan A , Chang Y , Mariani S , et al. , editors. A wide and deep transformer neural network for 12-lead ECG classification . 2020 Computing in Cardiology Conference; 2020. Sep 13-16; Palacongressi di Rimini, Rimini, Italy ; 2020 . p. 1 - 4 .
Abouelmehdi K , Beni-Hessane A , Khaloufi HJJoBD . Big healthcare data: preserving security and privacy . J. Big Data . 2018 ; 5 ( 1 ): 1 - 18 . doi: 10.1186/s40537-017-0110-7 https://dx.doi.org/10.1186/s40537-017-0110-7 . DOI: 10.1186/s40537-017-0110-7 http://doi.org/10.1186/s40537-017-0110-7 https://journalofbigdata.springeropen.com/articles/10.1186/s40537-017-0110-7 https://journalofbigdata.springeropen.com/articles/10.1186/s40537-017-0110-7
Konen J , Mcmahan HB , Ramage D , et al. Federated Optimization: Distributed Machine Learning for On-Device Intelligence . 2016 . doi: https://doi.org/10.48550/arXiv.1610.02527 https://dx.doi.org/https://doi.org/10.48550/arXiv.1610.02527 . DOI: https://doi.org/10.48550/arXiv.1610.02527 http://doi.org/https://doi.org/10.48550/arXiv.1610.02527
Tang R , Luo J , Qian J , et al. Personalized federated learning for ECG classification based on feature alignment . Secur. Commun. Netw 2021 ; 2021 ( 1 ): 1 - 9 . doi: 10.1155/2021/6217601 https://dx.doi.org/10.1155/2021/6217601 . DOI: 10.1155/2021/6217601 http://doi.org/10.1155/2021/6217601
Raza A , Tran KP , Koehl L , et al. Designing ECG monitoring healthcare system with federated transfer learning and explainable AI . Knowl Based Syst 2022 ; 236 ( 1 ): 107763 . doi: 10.1016/j.knosys.2021.107763 https://dx.doi.org/10.1016/j.knosys.2021.107763 . DOI: 10.1016/j.knosys.2021.107763 http://doi.org/10.1016/j.knosys.2021.107763 https://linkinghub.elsevier.com/retrieve/pii/S0950705121009862 https://linkinghub.elsevier.com/retrieve/pii/S0950705121009862
Ma C , Lan K , Wang J , et al. Arrhythmia detection based on multi-scale fusion of hybrid deep models from single lead ECG recordings: A multicenter dataset study . Biomed Signal Process Control 2022 ; 77 ( 1 ): 103753 . doi: https://doi.org/10.1016/j.bspc.2022.103753 https://dx.doi.org/https://doi.org/10.1016/j.bspc.2022.103753 . DOI: https://doi.org/10.1016/j.bspc.2022.103753 http://doi.org/https://doi.org/10.1016/j.bspc.2022.103753 https://linkinghub.elsevier.com/retrieve/pii/S1746809422002750 https://linkinghub.elsevier.com/retrieve/pii/S1746809422002750
Baghersalimi S , Teijeiro T , Atienza D , et al. Personalized real-time federated learning for epileptic seizure detection . IEEE J Biomed Health Inform 2022 ; 26 ( 2 ): 898 - 909 . doi: 10.1109/JBHI.2021.3096127 https://dx.doi.org/10.1109/JBHI.2021.3096127 . DOI: 10.1109/JBHI.2021.3096127 http://doi.org/10.1109/JBHI.2021.3096127 https://ieeexplore.ieee.org/document/9479691/ https://ieeexplore.ieee.org/document/9479691/
Brophy E , De Vos M , Boylan G , et al. Estimation of continuous blood pressure from PPG via a federated learning approach . Sensors (Basel) 2021 ; 21 ( 18 ): 6311 . doi: 10.3390/s21186311 https://dx.doi.org/10.3390/s21186311 . DOI: 10.3390/s21186311 http://doi.org/10.3390/s21186311
Publicity Resources
Related Articles
Related Author
Related Institution