FOLLOWUS
Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Shenzhen University (People’s Hospital of Shenzhen Baoan District), Shenzhen 518101, Guangdong Province, China
Received:06 December 2022,
Accepted:2023-6-5,
Published Online:03 July 2023,
Published:30 September 2023
Scan QR Code
Chao Huang, Hao-Sheng Liu, Bing-Jun Liang, et al. A Chinese Herb Prescription “
Chao Huang, Hao-Sheng Liu, Bing-Jun Liang, et al. A Chinese Herb Prescription “
背景与目的
探讨中药复方防感汤对SARS-CoV-2刺突蛋白诱导的肺、肠损伤的体外和体内保护作用及其机制。
方法
用重组SARS-CoV-2刺突蛋白刺激BALB/c雌性小鼠和3株经防感汤预处理的细胞系。检测各组组织苏木精-伊红(HE)染色、病理评分、细胞通透性和活力以及肺、结肠ACE2表达。酶联免疫吸附测定法(ELISA)检测小鼠血清和细胞上清中炎症因子水平。蛋白质印迹法(Western blotting)检测NF-κB p65、p-NF-κB p65、p- IκB α、p-Smad2/3、TGF-β1、Caspase3、Bcl-2的表达。
结果
从病理评分以及细胞通透性和活力来看,中草药在体内和体外均对刺突蛋白诱发的肺和结肠损伤均有保护作用(
P
<
0.05)。中草药上调肺和结肠中被刺突蛋白降低的ACE2表达,显著改善刺突蛋白引起的炎症标志物的分泌紊乱,同时调节TGF-β/Smads和NF-κB通路的活性。
结论
中药复方防感汤对SARS-CoV-2刺突蛋白刺激的肺和肠组织损伤具有一定的保护作用,其机制基于对可能具有组织类型特异的NF-κB和TGF-β1/Smad通路的调控作用。
Objective
To explore the effects and mechanisms of a traditional Chinese medicine (TCM) prescription
“
Fang-gan
Decoction” (FGD)
in protecting against SARS-CoV-2 spike protein-induced lung and intestinal injuries
in vitro
and
in vivo
.
Methods
Female BALB/c mice and three cell lines pretreated with FGD were stimulated with recombinant SARS-CoV-2 spike protein (spike protein). Hematoxylin-eosin (HE) staining and pathologic scoring of tissues
cell permeability and viability
and angiotensin-converting enzyme 2 (ACE2) expression in the lung and colon were detected. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of inflammatory factors in serum and cell supernatant. The expression of NF-κB p65
p-NF-κB p65
p-IκBα
p-Smad2/3
TGF-β1
Caspase3
and Bcl-2 was evaluated by Western blotting.
Results
FGD protected against the damage to the lung and colon caused by the spike protein
in vivo
and
in vitro
according to the pathologic score and cell permeability and viability (
P
<
0.05). FGD up-regulated ACE2 expression
which was reduced by the spike protein in the lung and colon
significantly improved the deregulation of inflammatory markers caused by the spike protein
and regulated the activity of TGF-β/Smads and NF-κB signaling.
Conclusion
Traditional Chinese medicine has a protective effect on lung and intestinal tissue injury stimulated by the spike protein through possible regulatory functions of the NF-κB and TGF-β1/Smad pathways with tissue type specificity.
Wang C , Horby PW , Hayden FG , et al . A novel coronavirus outbreak of global health concern . The Lancet 2020 ; 395 ( 10223 ): 470 - 3 . doi: 10.1016/S0140-6736(20)30185-9 https://dx.doi.org/10.1016/S0140-6736(20)30185-9 . https://linkinghub.elsevier.com/retrieve/pii/S0140673620301859 https://linkinghub.elsevier.com/retrieve/pii/S0140673620301859
Ozturkler Z , Kalkan R . A new perspective of COVID-19 infection: An epigenetics point of view . Glob Med Genet 2021 ; 9 ( 1 ): 4 - 6 . doi: 10.1055/s-0041-1736565 https://dx.doi.org/10.1055/s-0041-1736565 . http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1736565 http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1736565
Girma D , Dejene H , Adugna L , et al . COVID-19 case fatality rate and factors contributing to mortality in Ethiopia: A systematic review of current evidence . Infect Drug Resist , 2022 , 15 : 3491 - 501 . doi: 10.2147/IDR.S369266 https://dx.doi.org/10.2147/IDR.S369266 .
Huang K , Zhang P , Zhang Z , et al . Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms . Pharmacol Ther 2021 ; 225 : 107843 . doi: 10.1016/j.pharmthera.2021.107843 https://dx.doi.org/10.1016/j.pharmthera.2021.107843 . https://linkinghub.elsevier.com/retrieve/pii/S0163725821000450 https://linkinghub.elsevier.com/retrieve/pii/S0163725821000450
Zhao Z , Li Y , Zhou L , et al . Prevention and treatment of COVID-19 using Traditional Chinese Medicine: A review . Phytomedicine 2021 ; 85 : 153308 . doi: 10.1016/j.phymed.2020.153308 https://dx.doi.org/10.1016/j.phymed.2020.153308 . https://linkinghub.elsevier.com/retrieve/pii/S0944711320301409 https://linkinghub.elsevier.com/retrieve/pii/S0944711320301409
Feng Z , Yang J , Xu M , et al . Dietary supplements and herbal medicine for COVID-19: A systematic review of randomized control trials . Clin Nutr ESPEN 2021 ; 44 : 50 - 60 . doi: 10.1016/j.clnesp.2021.05.018 https://dx.doi.org/10.1016/j.clnesp.2021.05.018 .
An X , Zhang Y , Duan L , et al . The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19 . Biomed Pharmacother 2021 ; 137 : 111267 . doi: 10.1016/j.biopha.2021.111267 https://dx.doi.org/10.1016/j.biopha.2021.111267 .
Ren JL , Zhang AH , Wang XJ . Traditional Chinese medicine for COVID-19 treatment . Pharmacol Res 2020 ; 155 : 104743 . doi: 10.1016/j.phrs.2020.104743 https://dx.doi.org/10.1016/j.phrs.2020.104743 . https://linkinghub.elsevier.com/retrieve/pii/S1043661820307556 https://linkinghub.elsevier.com/retrieve/pii/S1043661820307556
Wang Z , Yang L . Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts . J Ethnopharmacol 2021 ; 270 : 113869 . doi: 10.1016/j.jep.2021.113869 https://dx.doi.org/10.1016/j.jep.2021.113869 . https://linkinghub.elsevier.com/retrieve/pii/S0378874121000957 https://linkinghub.elsevier.com/retrieve/pii/S0378874121000957
Ji Z , Hu H , Qiang X , et al . Traditional Chinese Medicine for COVID-19: A Network meta-analysis and systematic review . Am J Chin Med 2022 ; 50 ( 4 ): 883 - 925 . doi: 10.1142/S0192415X22500379 https://dx.doi.org/10.1142/S0192415X22500379 . https://www.worldscientific.com/doi/10.1142/S0192415X22500379 https://www.worldscientific.com/doi/10.1142/S0192415X22500379
Huang K , Zhang P , Zhang Z , et al . Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms . Pharmacol Ther 2021 ; 225 : 107843 . doi: 10.1016/j.pharmthera.2021.107843 https://dx.doi.org/10.1016/j.pharmthera.2021.107843 . https://linkinghub.elsevier.com/retrieve/pii/S0163725821000450 https://linkinghub.elsevier.com/retrieve/pii/S0163725821000450
Patel KP , Patel PA , Vunnam RR , et al. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19 . J Clin Virol 2020 ; 128 : 104386 . doi: 10.1016/j.jcv.2020.104386 https://dx.doi.org/10.1016/j.jcv.2020.104386 . https://linkinghub.elsevier.com/retrieve/pii/S1386653220301281 https://linkinghub.elsevier.com/retrieve/pii/S1386653220301281
Galanopoulos M , Gkeros F , Doukatas A , et al . COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract . World J Gastroenterol 2020 ; 26 ( 31 ): 4579 - 88 . doi: 10.3748/wjg.v26.i31.4579 https://dx.doi.org/10.3748/wjg.v26.i31.4579 . https://www.wjgnet.com/1007-9327/full/v26/i31/4579.htm https://www.wjgnet.com/1007-9327/full/v26/i31/4579.htm
Jin X , Lian JS , Hu JH , et al . Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms . Gut 2020 ; 69 ( 6 ): 1002 - 9 . doi: 10.1136/gutjnl-2020-320926 https://dx.doi.org/10.1136/gutjnl-2020-320926 .
Hunt RH , East JE , Lanas A , et al . COVID-19 and gastrointestinal disease: Implications for the gastroenterologist . Dig Dis 2021 ; 39 ( 2 ): 119 - 39 . doi: 10.1159/000512152 https://dx.doi.org/10.1159/000512152 .
Bojkova D , Wagner JUG , Shumliakivska M , et al . SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes . Cardiovasc Res 2020 ; 116 ( 14 ): 2207 - 15 . doi: 10.1093/cvr/cvaa267 https://dx.doi.org/10.1093/cvr/cvaa267 .
Corpetti C , Del Re A , Seguella L , et al . Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line . Phytother Res 2021 ; 35 ( 12 ): 6893 - 903 . doi: 10.1002/ptr.7302 https://dx.doi.org/10.1002/ptr.7302 .
Mannar D , Saville JW , Zhu X , et al . SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex . Science 2022 ; 375 ( 6582 ): 760 - 4 . doi: 10.1126/science.abn7760 https://dx.doi.org/10.1126/science.abn7760 .
Ashraf UM , Abokor AA , Edwards JM , et al . SARS-CoV-2, ACE 2 expression, and systemic organ invasion . Physiol Genomics 2021 ; 53 ( 2 ): 51 - 60 . doi: 10.1152/physiolgenomics.00087.2020 https://dx.doi.org/10.1152/physiolgenomics.00087.2020 .
Lv Y , Wang S , Liang P , et al . Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach . Anal Bioanal Chem 2021 ; 413 ( 11 ): 2995 - 3004 . doi: 10.1007/s00216-021-03233-7 https://dx.doi.org/10.1007/s00216-021-03233-7 .
Babapoor-Farrokhran S , Gill D , Walker J , et al . Myocardial injury and COVID-19: Possible mechanisms . Life Sci 2020 ; 253 : 117723 . doi: 10.1016/j.lfs.2020.117723 https://dx.doi.org/10.1016/j.lfs.2020.117723 . https://linkinghub.elsevier.com/retrieve/pii/S0024320520304719 https://linkinghub.elsevier.com/retrieve/pii/S0024320520304719
Colunga Biancatelli RML , Solopov PA , Sharlow ER , et al . The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells . Am J Physiol Lung Cell Mol Physiol 2021 ; 321 ( 2 ): L477 - 84 . doi: 10.1152/ajplung.00223.2021 https://dx.doi.org/10.1152/ajplung.00223.2021 . https://journals.physiology.org/doi/10.1152/ajplung.00223.2021 https://journals.physiology.org/doi/10.1152/ajplung.00223.2021
Hekman RM , Hume AJ , Goel RK , et al . Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2 . Mol Cell 2020 ; 80 ( 6 ): 1104 - 22.e9 . doi: 10.1016/j.molcel.2020.11.028 https://dx.doi.org/10.1016/j.molcel.2020.11.028 .
Chen J , Wang W , Tang Y , et al . Inflammatory stress in SARS-COV-2 associated acute kidney injury . Int J Biol Sci 2021 ; 17 ( 6 ): 1497 - 506 . doi: 10.7150/ijbs.58791 https://dx.doi.org/10.7150/ijbs.58791 .
Wang W , Chen J , Hu D , et al . SARS-CoV-2 N protein induces acute kidney injury via Smad3-dependent G 1 cell cycle arrest mechanism . Adv Sci (Weinh) 2022 ; 9 ( 3 ): e2103248 . doi: 10.1002/advs.202103248 https://dx.doi.org/10.1002/advs.202103248 .
Vaz de Paula CB , Nagashima S , et al . IL-4/IL-13 remodeling pathway of COVID-19 lung injury . Sci Rep 2020 ; 10 ( 1 ): 18689 . doi: 10.1038/s41598-020-75659-5 https://dx.doi.org/10.1038/s41598-020-75659-5 .
Lu Y , Zhang Y , Pan Z , et al . Potential “therapeutic” effects of tocotrienol-rich fraction (TRF) and carotene “against” bleomycin-induced pulmonary fibrosis in rats via TGF-β/Smad, PI3K/Akt/mTOR and NF-κB signaling pathways . Nutrients 2022 ; 14 ( 5 ): 1094 . doi: 10.3390/nu14051094 https://dx.doi.org/10.3390/nu14051094 . https://www.mdpi.com/2072-6643/14/5/1094 https://www.mdpi.com/2072-6643/14/5/1094
Wang W , Chen J , Hu D , et al . SARS-CoV-2 N protein induces acute kidney injury via Smad3-dependent G 1 cell cycle arrest mechanism . Adv Sci (Weinh) 2022 ; 9 ( 3 ): e2103248 . doi: 10.1002/advs.202103248 https://dx.doi.org/10.1002/advs.202103248 .
Cui Y , Xin H , Tao Y , et al . Arenaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-kB/TGF-beta1/Smad2/3 pathway . Phytother Res 2021 ; 35 ( 2 ): 974 - 86 . doi: 10.1002/ptr.6857 https://dx.doi.org/10.1002/ptr.6857 . https://onlinelibrary.wiley.com/toc/10991573/35/2 https://onlinelibrary.wiley.com/toc/10991573/35/2
Zheng M , Karki R , Williams EP , et al . TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines . Nat Immunol 2021 ; 22 ( 7 ): 829 - 38 . doi: 10.1038/s41590-021-00937-x https://dx.doi.org/10.1038/s41590-021-00937-x .
Moustaqil M , Ollivier E , Chiu HP , et al . SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species . Emerg Microbes Infect 2021 10 ( 1 ): 178 - 95 . doi: 10.1080/22221751.2020.1870414 https://dx.doi.org/10.1080/22221751.2020.1870414 . https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1870414 https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1870414
Tan Y , Tang F . SARS-CoV-2-mediated immune system activation and potential application in immunotherapy . Med Res Rev 2021 ; 41 ( 2 ): 1167 - 94 . doi: 10.1002/med.21756 https://dx.doi.org/10.1002/med.21756 .
Petruk G , Puthia M , Petrlova J , et al . SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity . J Mol Cell Biol 2020 ; 12 ( 12 ): 916 - 32 . doi: 10.1093/jmcb/mjaa067 https://dx.doi.org/10.1093/jmcb/mjaa067 . https://academic.oup.com/jmcb/article/12/12/916/6028992 https://academic.oup.com/jmcb/article/12/12/916/6028992
Karwaciak I , Karaś K , Sałkowska A , et al . Chlorpromazine, a clinically approved drug, inhibits SARS-CoV-2 nucleocapsid-mediated induction of IL-6 in human monocytes . Molecules 2022 ; 27 ( 12 ): 3651 . doi: 10.3390/molecules27123651 https://dx.doi.org/10.3390/molecules27123651 . https://www.mdpi.com/1420-3049/27/12/3651 https://www.mdpi.com/1420-3049/27/12/3651
Sharma VK , Prateeksha , Singh SP , et al . Nanocurcumin potently inhibits SARS-CoV-2 Spike protein-induced cytokine storm by deactivation of MAPK/NF-κB signaling in epithelial cells . ACS Appl Bio Mater 2022 ; 5 ( 2 ): 483 - 91 . doi: 10.1021/acsabm.1c00874 https://dx.doi.org/10.1021/acsabm.1c00874 .
DuShane JK , Wilczek MP , Mayberry CL , et al . ERK is a critical regulator of JC polyomavirus infection . J Virol 2018 ; 92 ( 7 )): e01529 - 17 . doi: 10.1128/JVI.01529-17 https://dx.doi.org/10.1128/JVI.01529-17 .
Ghasemnejad-Berenji M , Pashapour S . SARS-CoV-2 and the possible role of Raf/MEK/ERK pathway in viral survival: is this a potential therapeutic strategy for COVID-19? Pharmacology 2021 ; 106 ( 1-2 ): 119 - 22 . doi: 10.1159/000511280 https://dx.doi.org/10.1159/000511280 .
Schreiber A , Viemann D , Schöning J , et al . The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses . Cell Mol Life Sci 2022 ; 79 ( 1 ): 65 . doi: 10.1007/s00018-021-04085-1 https://dx.doi.org/10.1007/s00018-021-04085-1 .
Zeng FM , Li YW , Deng ZH , et al . SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in enterocytes . EMBO Mol Med 2022 ; 14 ( 5 ): e14844 . doi: 10.15252/emmm.202114844 https://dx.doi.org/10.15252/emmm.202114844 . https://www.embopress.org/doi/10.15252/emmm.202114844 https://www.embopress.org/doi/10.15252/emmm.202114844
Xie P , Fang Y , Shen Z , et al . Broad antiviral and anti-inflammatory activity of Qingwenjiere mixture against SARS-CoV-2 and other human coronavirus infections . Phytomedicine 2021 ; 93 : 153808 . doi: 10.1016/j.phymed.2021.153808 https://dx.doi.org/10.1016/j.phymed.2021.153808 . https://linkinghub.elsevier.com/retrieve/pii/S0944711321003512 https://linkinghub.elsevier.com/retrieve/pii/S0944711321003512
Neufeldt CJ , Cerikan B , Cortese M , et al . SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB . Commun Biol 2022 ; 5 ( 1 ): 45 . doi: 10.1038/s42003-021-02983-5 https://dx.doi.org/10.1038/s42003-021-02983-5 .
Wu Y , Ma L , Cai S , et al . RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation . Signal Transduct Target Ther 2021 ; 6 ( 1 ): 167 . doi: 10.1038/s41392-021-00575-7 https://dx.doi.org/10.1038/s41392-021-00575-7 .
Robles JP , Zamora M , Adan-Castro E , et al . The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling . J Biol Chem 2022 ; 298 ( 3 ): 101695 . doi: 10.1016/j.jbc.2022.101695 https://dx.doi.org/10.1016/j.jbc.2022.101695 . https://linkinghub.elsevier.com/retrieve/pii/S0021925822001351 https://linkinghub.elsevier.com/retrieve/pii/S0021925822001351
Colunga Biancatelli RML , Solopov PA , Sharlow ER , et al . The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells . Am J Physiol Lung Cell Mol Physiol 2021 ; 321 ( 2 ): L477 - 84 . doi: 10.1152/ajplung.00223.2021 https://dx.doi.org/10.1152/ajplung.00223.2021 . https://journals.physiology.org/doi/10.1152/ajplung.00223.2021 https://journals.physiology.org/doi/10.1152/ajplung.00223.2021
Xia J , Tang W , Wang J , et al . SARS-CoV-2 N protein induces acute lung injury in mice via NF-ĸB activation . Front Immunol 2021 ; 12 : 791753 . doi: 10.3389/fimmu.2021.791753 https://dx.doi.org/10.3389/fimmu.2021.791753 . https://www.frontiersin.org/articles/10.3389/fimmu.2021.791753/full https://www.frontiersin.org/articles/10.3389/fimmu.2021.791753/full
Publicity Resources
Related Articles
Related Author
Related Institution