
FOLLOWUS
1. 1Department of Pathology, Gansu Provincial Hospital, Lazhou 730000, China
2. 2Department of Occupational Medicine, the Third Gansu Provincial Hospital, Lanzhou 730000, China
3. 3Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou 730000, China
*赵凤辉 zhaofh0931@163.com
收稿日期:2021-09-09,
录用日期:2022-3-6,
网络出版日期:2022-05-11,
纸质出版日期:2022-09-30
Scan QR Code
陈旭, 刘红玲, 李德红, 等. Wnt5a在炎性疾病中具有双向调节性[J]. 中国医学科学杂志(英文版), 2022,37(3):265-274.
Xu Chen, Hongling Liu, Dehong Li, et al. Dual Role of Wnt5a in the Progression of Inflammatory Diseases[J]. Chinese medical sciences journal, 2022, 37(3): 265-274.
陈旭, 刘红玲, 李德红, 等. Wnt5a在炎性疾病中具有双向调节性[J]. 中国医学科学杂志(英文版), 2022,37(3):265-274. DOI: 10.24920/003994.
Xu Chen, Hongling Liu, Dehong Li, et al. Dual Role of Wnt5a in the Progression of Inflammatory Diseases[J]. Chinese medical sciences journal, 2022, 37(3): 265-274. DOI: 10.24920/003994.
Wnt5a是一种分泌性的Wnt蛋白
在细胞通路及炎性疾病中扮演重要作用。
WNT5A
基因可编码形成Wnt5a长链蛋白和Wnt5a短链蛋白
这两种蛋白的形成取决于
WNT5A
基因启动子甲基化的部位
具有不同的功能。然而
WNT5A
基因启动子甲基化的机制目前仍然不清楚。在炎性疾病中
因为
WNT5A
基因甲基化的部位不同
Wnt5a具有抑制炎症和促进炎症的双面功能
这或许涉及Wnt5a蛋白不同的亚型。因此
Wnt5a蛋白的不同亚型或许是潜在的炎性疾病诊断标记
WNT5A
基因甲基化的具体机制也需要深入研究。
Wnt5a is a secreted Wnt ligand that plays a critical role in cellular pathways and inflammatory diseases. The
WNT5A
gene encodes two protein isoforms
Wnt5a-long and Wnt5a-short
which differ based on different promoter methylation and have distinct functions. However
the mechanisms of the promoter methylation are unclear. Depending on the extent of promoter methylation
Wnt5a exerts both anti-inflammatory and pro-inflammatory effects in inflammatory diseases
which may be involved in different Wnt5a isoforms. Therefore
the Wnt5a isoforms may be potential diagnostic markers for inflammatory diseases and the mechanisms of the
WNT5A
gene promoter methylation need to be further investigated.
Esse S , Mason KJ , Green AC , et al. Melanoma risk in patients treated with biologic therapy for common inflammatory diseases: a systematic review and meta-analysis . JAMA Dermatol 2020 ; 156 ( 7 ): 787 - 94 . doi: 10.1001/jamadermatol.2020.1300 https://dx.doi.org/10.1001/jamadermatol.2020.1300 . DOI: 10.1001/jamadermatol.2020.1300 http://doi.org/10.1001/jamadermatol.2020.1300
Quandt J , Arnovitz S , Haghi L , et al. Wnt-β-catenin activation epigenetically reprograms Treg cells in inflammatory bowel disease and dysplastic progression . Nat Immunol 2021 ; 22 ( 4 ): 471 - 84 . doi: 10.1038/s41590-021-00889-2 https://dx.doi.org/10.1038/s41590-021-00889-2 . DOI: 10.1038/s41590-021-00889-2 http://doi.org/10.1038/s41590-021-00889-2 https://doi.org/10.1038/s41590-021-00889-2 https://doi.org/10.1038/s41590-021-00889-2
Shoshkes-Carmel M , Wang YJ , Wangensteen KJ , et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts . Nature 2018 ; 557 ( 7704 ): 242 - 6 . doi: 10.1038/s41586-018-0084-4 https://dx.doi.org/10.1038/s41586-018-0084-4 . DOI: 10.1038/s41586-018-0084-4 http://doi.org/10.1038/s41586-018-0084-4 https://doi.org/10.1038/s41586-018-0084-4 https://doi.org/10.1038/s41586-018-0084-4
Guo Z , Huang M , Yuan Y , et al. Nischarin downregulation attenuates cell injury induced by oxidative stress via Wnt signaling . Neuroreport 2020 ; 31 ( 17 ): 1199 - 1207 . doi: 10.1097/wnr.0000000000001536 https://dx.doi.org/10.1097/wnr.0000000000001536 . DOI: 10.1097/WNR.0000000000001536 http://doi.org/10.1097/WNR.0000000000001536
Yi M , Ha A , Lau WD , et al. Next-generation surrogate wnts support organoid growth and deconvolute frizzled pleiotropy in vivo . Cell Stem Cell 2020 ; 27 ( 5 ): 840 - 51 . doi: 10.1016/j.stem.2020.07.020 https://dx.doi.org/10.1016/j.stem.2020.07.020 . DOI: 10.1016/j.stem.2020.07.020 http://doi.org/10.1016/j.stem.2020.07.020 https://linkinghub.elsevier.com/retrieve/pii/S1934590920303581 https://linkinghub.elsevier.com/retrieve/pii/S1934590920303581
Huang Y , Zhang Q , Song NN , et al. LRP5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin . Molecular Brain 2016 ; 9 ( 1 ): 7 . doi: 10.1186/s13041-015-0183-1 https://dx.doi.org/10.1186/s13041-015-0183-1 . DOI: 10.1186/s13041-015-0183-1 http://doi.org/10.1186/s13041-015-0183-1 http://www.molecularbrain.com/content/9/1/7 http://www.molecularbrain.com/content/9/1/7
Ma SSQ , Srivastava S , Llamosas E , et al. ROR2 is epigenetically inactivated in the early stages of colorectal neoplasia and is associated with proliferation and migration . BMC Cancer 2016 ; 16 ( 4 ): 508 . doi: 10.1186/s12885-016-2576-7 https://dx.doi.org/10.1186/s12885-016-2576-7 . DOI: 10.1186/s12885-016-2576-7 http://doi.org/10.1186/s12885-016-2576-7 http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2576-7 http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2576-7
Hollis ER , Ishiko N , Yu T , et al. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury . Nat Neurosci 2016 ; 19 ( 5 ): 697 - 705 . doi: 10.1038/nn.4282 https://dx.doi.org/10.1038/nn.4282 . DOI: 10.1038/nn.4282 http://doi.org/10.1038/nn.4282
Hwang S-Y , Deng X , Byun S , et al. Direct targeting of β-Catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-Catenin signaling . Cell Rep 2016 ; 16 ( 1 ): 28 - 36 . doi: 10.1016/j.celrep.2016.05.071 https://dx.doi.org/10.1016/j.celrep.2016.05.071 . DOI: 10.1016/j.celrep.2016.05.071 http://doi.org/10.1016/j.celrep.2016.05.071 https://linkinghub.elsevier.com/retrieve/pii/S2211124716306842 https://linkinghub.elsevier.com/retrieve/pii/S2211124716306842
Voloshanenko O , Schwartz U , Kranz D , et al. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF 4 in colon cancer cells . Sci Rep 2018 ( 1 ); 8 : 3178. doi: 10.1038/s41598-018-20641-5 https://dx.doi.org/10.1038/s41598-018-20641-5 . DOI: 10.1038/s41598-018-20641-5 http://doi.org/10.1038/s41598-018-20641-5
Tompa M , Kajtar B , Galik B , et al . DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma . Pathol Res Pract 2021 ; 222 ( 11 ): 153429 . doi: 10.1016/j.prp.2021.153429 https://dx.doi.org/10.1016/j.prp.2021.153429 . DOI: 10.1016/j.prp.2021.153429 http://doi.org/10.1016/j.prp.2021.153429 https://linkinghub.elsevier.com/retrieve/pii/S034403382100090X https://linkinghub.elsevier.com/retrieve/pii/S034403382100090X
Zou L , Chen L , Xia P F , et al. XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm . Biosci Rep 2021 ; 41 ( 3 ): 221 - 30 . doi: 10.1042/BSR20201810 https://dx.doi.org/10.1042/BSR20201810 . DOI: 10.1042/BSR20201810 http://doi.org/10.1042/BSR20201810
Zhao F , Xiao C , Evans KS , et al. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization . Immunity 2018 ; 48 ( 1 ): 147 - 60.e147 . doi: 10.1016/j.immuni.2017.12.004 https://dx.doi.org/10.1016/j.immuni.2017.12.004 DOI: S1074-7613(17)30533-2 http://doi.org/S1074-7613(17)30533-2
Akiyama N , Yamamoto-Fukuda T , Yoshikawa M , et al. Regulation of DNA methylation levels in the process of oral mucosal regeneration in a rat oral ulcer model . Histol Histopathol 2020 ; 35 ( 3 ): 247 - 256 . doi: 10.14670/hh-18-147 https://dx.doi.org/10.14670/hh-18-147 . DOI: 10.14670/HH-18-147 http://doi.org/10.14670/HH-18-147
Oz B , Yildirim A , Yolbas S , et al. Resveratrol inhibits Src tyrosine kinase, STAT3, and Wnt signaling pathway in collagen induced arthritis model . Biofactors 2019 ; 45 ( 1 ): 69 - 74 . doi: 10.1002/biof.1463 https://dx.doi.org/10.1002/biof.1463 . DOI: 10.1002/biof.1463 http://doi.org/10.1002/biof.1463
Gerdes S , Laudes M , Neumann K , et al. Wnt5a: a potential factor linking psoriasis to metabolic complications . Exp Dermatol 2014 ; 23 ( 6 ): 438 - 40 . doi: 10.1111/exd.12413 https://dx.doi.org/10.1111/exd.12413 . DOI: 10.1111/exd.12413 http://doi.org/10.1111/exd.12413
Ackers I , Szymanski C , Duckett KJ , et al. Blocking Wnt5a signaling decreases CD 36 expression and foam cell formation in atherosclerosis . Cardiovasc Pathol 2018 ; 34 : 1 - 8 . doi: 10.1016/j.carpath.2018.01.008 https://dx.doi.org/10.1016/j.carpath.2018.01.008 . DOI: S1054-8807(17)30311-3 http://doi.org/S1054-8807(17)30311-3
Schulte DM , Kragelund D , Müller N , et al. The wingless-related integration site-5a/secreted frizzled-related protein-5 system is dysregulated in human sepsis . Clin Exp Immunol 2015 ; 180 ( 1 ): 90 - 7 . doi: 10.1111/cei.12484 https://dx.doi.org/10.1111/cei.12484 . DOI: 10.1111/cei.12484 http://doi.org/10.1111/cei.12484
Clark CC , Cohen I , Eichstetter I , et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21 . Genomics 1993 ; 18 ( 2 ): 249 - 60 . doi: 10.1006/geno.1993.1463 https://dx.doi.org/10.1006/geno.1993.1463 . DOI: 10.1006/geno.1993.1463 http://doi.org/10.1006/geno.1993.1463
Jin P , Song Y and Yu G . The Role of Abnormal Methylation of Wnt5a Gene Promoter Regions in Human Epithelial Ovarian Cancer: A Clinical and Experimental Study . Anal Cell Pathol (Amst) 2018 ; 2018 ( 1 ): 6567081 . doi: 10.1155/2018/6567081 https://dx.doi.org/10.1155/2018/6567081 . DOI: 10.1155/2018/6567081 http://doi.org/10.1155/2018/6567081
Chiba N , Furukawa KI , Takayama S , et al. Decreased DNA methylation in the promoter region of the WNT5A and GDNF genes may promote the osteogenicity of mesenchymal stem cells from patients with ossified spinal ligaments . J Pharmacol Sci 2015 ; 127 ( 4 ): 467 - 73 . doi: 10.1016/j.jphs.2015.03.008 https://dx.doi.org/10.1016/j.jphs.2015.03.008 . DOI: 10.1016/j.jphs.2015.03.008 http://doi.org/10.1016/j.jphs.2015.03.008
Bauer M , Bénard J , Gaasterland T , et al. WNT5A encodes two isoforms with distinct functions in cancers . PloS one 2013 ; 8 ( 11 ): e80526 . doi: 10.1371/journal.pone.0080526 https://dx.doi.org/10.1371/journal.pone.0080526 . DOI: 10.1371/journal.pone.0080526 http://doi.org/10.1371/journal.pone.0080526 https://dx.plos.org/10.1371/journal.pone.0080526 https://dx.plos.org/10.1371/journal.pone.0080526
Santos JMA , Mendes-Silva L , Afonso V , et al. Exogenous WNT5A and WNT 11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphants . Cell Death Dis 2019 ; 10 ( 8 ): 582 . doi: 10.1038/s41419-019-1816-6 https://dx.doi.org/10.1038/s41419-019-1816-6 . DOI: 10.1038/s41419-019-1816-6 http://doi.org/10.1038/s41419-019-1816-6
Huang TC , Lee PT , Wu MH , et al. Distinct roles and differential expression levels of Wnt5a mRNA isoforms in colorectal cancer cells . PLoS One 2017 ; 12 ( 8 ): e0181034 . doi: 10.1371/journal.pone.0181034 https://dx.doi.org/10.1371/journal.pone.0181034 . DOI: 10.1371/journal.pone.0181034 http://doi.org/10.1371/journal.pone.0181034 https://dx.plos.org/10.1371/journal.pone.0181034 https://dx.plos.org/10.1371/journal.pone.0181034
van Amerongen R , Fuerer C , Mizutani M , et al. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development . Dev Biol 2012 ; 369 ( 1 ): 101 - 14 . doi: 10.1016/j.ydbio.2012.06.020 https://dx.doi.org/10.1016/j.ydbio.2012.06.020 . DOI: 10.1016/j.ydbio.2012.06.020 http://doi.org/10.1016/j.ydbio.2012.06.020
Liu H , Zhang C-X , Ma Y , et al. SphK1 inhibitor SKI II inhibits the proliferation of human hepatoma HepG2 cells via the Wnt5A/β-catenin signaling pathway . Life Sci 2016 ; 151 : 23 - 9 . doi: 10.1016/j.lfs.2016.02.098 https://dx.doi.org/10.1016/j.lfs.2016.02.098 . DOI: S0024-3205(16)30148-5 http://doi.org/S0024-3205(16)30148-5
Fu HD , Wang BK , Wan ZQ , et al. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation . J Mol Histol 2016 ; 47 ( 5 ): 455 - 66 . doi: 10.1007/s10735-016-9687-y https://dx.doi.org/10.1007/s10735-016-9687-y . DOI: 10.1007/s10735-016-9687-y http://doi.org/10.1007/s10735-016-9687-y http://link.springer.com/10.1007/s10735-016-9687-y http://link.springer.com/10.1007/s10735-016-9687-y
Xing F , Yi WJ , Miao F , et al. Baicalin increases hair follicle development by increasing canonical Wnt/β-catenin signaling and activating dermal papillar cells in mice . Int J Mol Med 2018 ; 41 ( 4 ): 2079 - 85 . doi: 10.3892/ijmm.2018.3391 https://dx.doi.org/10.3892/ijmm.2018.3391 . DOI: 10.3892/ijmm.2018.3391 http://doi.org/10.3892/ijmm.2018.3391
Cao M , Chan RWS , Cheng FHC , et al. Myometrial cells stimulate self-renewal of endometrial mesenchymal stem-like cells through WNT5A/β-Catenin signaling . Stem Cell 2019 ; 37 ( 11 ): 1455 - 66 . doi: 10.1002/stem.3070 https://dx.doi.org/10.1002/stem.3070 . DOI: 10.1002/stem.3070 http://doi.org/10.1002/stem.3070 https://academic.oup.com/stmcls/article/37/11/1455/6447870 https://academic.oup.com/stmcls/article/37/11/1455/6447870
Ren D , Dai Y , Yang Q , et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone . J Exp Med 2019 ; 216 ( 2 ): 428 - 49 . doi: 10.1084/jem.20180661 https://dx.doi.org/10.1084/jem.20180661 . DOI: 10.1084/jem.20180661 http://doi.org/10.1084/jem.20180661
Flores-Hernández E , Velázquez DM , Castañeda-Patlán MC , et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells . Cell Signal 2020 ; 72 : 109636 . doi: 10.1016/j.cellsig.2020.109636 https://dx.doi.org/10.1016/j.cellsig.2020.109636 . DOI: 10.1016/j.cellsig.2020.109636 http://doi.org/10.1016/j.cellsig.2020.109636 https://linkinghub.elsevier.com/retrieve/pii/S0898656820301133 https://linkinghub.elsevier.com/retrieve/pii/S0898656820301133
Yin N , Liu Y , Khoor A , et al. Protein Kinase Cι and Wnt/β-Catenin Signaling: Alternative Pathways to Kras/Trp53-Driven Lung Adenocarcinoma . Cancer Cell 2019 ; 36 ( 2 ): 156 - 167.e157 . doi: 10.1016/j.ccell.2019.07.002 https://dx.doi.org/10.1016/j.ccell.2019.07.002 . DOI: S1535-6108(19)30329-0 http://doi.org/S1535-6108(19)30329-0
Kondo A and Kaestner KH . FoxL1+ mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development . Cells Dev 2021 ; 165 : 203662 . doi: 10.1016/j.cdev.2021.203662 https://dx.doi.org/10.1016/j.cdev.2021.203662 . DOI: 10.1016/j.cdev.2021.203662 http://doi.org/10.1016/j.cdev.2021.203662 https://linkinghub.elsevier.com/retrieve/pii/S2667290121000097 https://linkinghub.elsevier.com/retrieve/pii/S2667290121000097
Kim S , Nie H , Nesin V , et al. The polycystin complex mediates Wnt/Ca2+ signalling . Nat Cell Biol 2016 ; 18 ( 7 ): 752 - 64 . doi: 10.1038/ncb3363 https://dx.doi.org/10.1038/ncb3363 DOI: 10.1038/ncb3363 http://doi.org/10.1038/ncb3363
Chattopadhyay S , Chatterjee R and Law S. Noncanonical Wnt5a-Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity . Environ Toxicol 2016 ; 31 ( 10 ): 1163 - 75 . doi: 10.1002/tox.22123 https://dx.doi.org/10.1002/tox.22123 . DOI: 10.1002/tox.22123 http://doi.org/10.1002/tox.22123
Ulmer B , Tingler M , Kurz S , et al. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse . Sci Rep 2017 ; 7 : 43010 . doi: 10.1038/srep43010 https://dx.doi.org/10.1038/srep43010 . DOI: 10.1038/srep43010 http://doi.org/10.1038/srep43010
Hasegawa D , Wada N , Yoshida S , et al. Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling . J Cell Physiol 2018 ; 233 ( 2 ): 1752 - 62 . doi: 10.1002/jcp.26086 https://dx.doi.org/10.1002/jcp.26086 . DOI: 10.1002/jcp.26086 http://doi.org/10.1002/jcp.26086
Sessa R , Yuen D , Wan S , et al. Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis . Cell Res 2016 ; 26 ( 2 ): 262 - 5 . doi: 10.1038/cr.2015.105 https://dx.doi.org/10.1038/cr.2015.105 . DOI: 10.1038/cr.2015.105 http://doi.org/10.1038/cr.2015.105
Wu T , Zhang J , Geng M , et al. Nucleoside reverse transcriptase inhibitors (NRTIs) induce pro-inflammatory cytokines in the CNS via Wnt5a signaling . Sci Rep 2017 ; 7 ( 1 ): 4117 . doi: 10.1038/s41598-017-03446-w https://dx.doi.org/10.1038/s41598-017-03446-w . DOI: 10.1038/s41598-017-03446-w http://doi.org/10.1038/s41598-017-03446-w http://www.nature.com/articles/s41598-017-03446-w http://www.nature.com/articles/s41598-017-03446-w
Li Z , Zhang K , Li X , et al. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-α/NF-κB-Wnt5a negative-feedback loop . Osteoarthritis and Cartilage 2018 ; 26 ( 7 ): 966 - 977 . doi: 10.1016/j.joca.2018.04.002 https://dx.doi.org/10.1016/j.joca.2018.04.002 . DOI: S1063-4584(18)31143-9 http://doi.org/S1063-4584(18)31143-9
González P , González‐Fernández C , Javier Rodriguez F . Effects of Wnt5a overexpression in spinal cord injury . J Cell Mol Med 2021 ; 25 ( 11 ): 5150 - 63 . doi: 10.1111/jcmm.16507 https://dx.doi.org/10.1111/jcmm.16507 . DOI: 10.1111/jcmm.16507 http://doi.org/10.1111/jcmm.16507
Cui J , Li M , Liu W , et al. Liver kinase B 1 overexpression controls mycobacterial infection in macrophages via FOXO1/Wnt5a signaling . J Cell Biochem 2019 ; 120 ( 1 ): 224 - 31 . doi: 10.1002/jcb.27322 https://dx.doi.org/10.1002/jcb.27322 . DOI: 10.1002/jcb.27322 http://doi.org/10.1002/jcb.27322 https://onlinelibrary.wiley.com/toc/10974644/120/1 https://onlinelibrary.wiley.com/toc/10974644/120/1
Rauner M , Stein N , Winzer M , et al. WNT5A is a novel regulator of cytokine and chemokine expression in bone marrow stromal cells . Bone 2011 ; 48 ( Supplement 2 ): S100 . doi: 10.1016/j.bone.2011.03.149 https://dx.doi.org/10.1016/j.bone.2011.03.149 . DOI: 10.1016/j.bone.2011.03.149 http://doi.org/10.1016/j.bone.2011.03.149
Zhao Y , Wang CL , Li RM , et al. Wnt5a promotes inflammatory responses via nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells . J Biol Chem 2017 ; 292 ( 10 ): 4358 . doi: 10.1074/jbc.A113.546523 https://dx.doi.org/10.1074/jbc.A113.546523 . DOI: 10.1074/jbc.A113.546523 http://doi.org/10.1074/jbc.A113.546523
Kim J , Kim J , Kim DW , et al. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling . J Immunol 2010 ; 185 ( 2 ): 1274 - 82 . doi: 10.4049/jimmunol.1000181 https://dx.doi.org/10.4049/jimmunol.1000181 . DOI: 10.4049/jimmunol.1000181 http://doi.org/10.4049/jimmunol.1000181
Zhao C , Bu X , Wang W , et al. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation . PLoS One 2014 ; 9 ( 1 ): e85058 . doi: 10.1371/journal.pone.0085058 https://dx.doi.org/10.1371/journal.pone.0085058 . DOI: 10.1371/journal.pone.0085058 http://doi.org/10.1371/journal.pone.0085058 https://dx.plos.org/10.1371/journal.pone.0085058 https://dx.plos.org/10.1371/journal.pone.0085058
Nakao Y , Fukuda T , Zhang Q , et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss . Acta Biomater 2021 ; 122 : 306 - 24 . doi: 10.1016/j.actbio.2020.12.046 https://dx.doi.org/10.1016/j.actbio.2020.12.046 . DOI: 10.1016/j.actbio.2020.12.046 http://doi.org/10.1016/j.actbio.2020.12.046
Benam KH , Villenave R , Lucchesi C , et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro . Nat Methods 2016 ; 13 ( 2 ): 151 - 7 . doi: 10.1038/nmeth.3697 https://dx.doi.org/10.1038/nmeth.3697 . DOI: 10.1038/nmeth.3697 http://doi.org/10.1038/nmeth.3697
Feng Y , Liang Y , Zhu X , et al. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz . J Biol Chem 2018 ; 293 ( 50 ): 19290 - 302 . doi: 10.1074/jbc.RA118.005457 https://dx.doi.org/10.1074/jbc.RA118.005457 . DOI: 10.1074/jbc.RA118.005457 http://doi.org/10.1074/jbc.RA118.005457
Qin L , Hu R , Zhu N , et al. The novel role and underlying mechanism of Wnt5a in regulating cellular cholesterol accumulation . Clin Exp Pharmacol Physiol 2014 ; 41 ( 9 ): 671 - 8 . doi: 10.1111/1440-1681.12258 https://dx.doi.org/10.1111/1440-1681.12258 . DOI: 10.1111/1440-1681.12258 http://doi.org/10.1111/1440-1681.12258
Arderiu G , Espinosa S , Peña E , et al. Monocyte-secreted Wnt5a interacts with FZD 5 in microvascular endothelial cells and induces angiogenesis through tissue factor signaling . J Mol Cell Biol 2014 ; 6 ( 5 ): 380 - 93 . doi: 10.1093/jmcb/mju036 https://dx.doi.org/10.1093/jmcb/mju036 . DOI: 10.1093/jmcb/mju036 http://doi.org/10.1093/jmcb/mju036
Skaria T , Schoedon G . Inflammatory Wnt5A signalling pathways affecting barrier function of human vascular endothelial cells . J Inflamm (Lond) 2017 ; 14 : 15 . doi: 10.1186/s12950-017-0163-6 https://dx.doi.org/10.1186/s12950-017-0163-6 . DOI: 10.1186/s12950-017-0163-6 http://doi.org/10.1186/s12950-017-0163-6 http://journal-inflammation.biomedcentral.com/articles/10.1186/s12950-017-0163-6 http://journal-inflammation.biomedcentral.com/articles/10.1186/s12950-017-0163-6
Ochiai M , Tanaka E , Sato E , et al. Successful discontinuation of biological disease-modifying antirheumatic drugs in patients with rheumatoid arthritis in real-world settings . Mod Rheumatol 2021 ; 31 ( 4 ): 790 - 5 . doi: 10.1080/14397595.2021.1883252 https://dx.doi.org/10.1080/14397595.2021.1883252 . DOI: 10.1080/14397595.2021.1883252 http://doi.org/10.1080/14397595.2021.1883252 https://academic.oup.com/mr/article/31/4/790-795/6314976 https://academic.oup.com/mr/article/31/4/790-795/6314976
Wang S , Liu Z , Wang J , et al. The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice . Phytother Res 2019 ; 33 ( 2 ): 342 - 9 . doi: 10.1002/ptr.6224 https://dx.doi.org/10.1002/ptr.6224 DOI: 10.1002/ptr.6224 http://doi.org/10.1002/ptr.6224
MacLauchlan S , Zuriaga MA , Fuster JJ , et al. Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis . Arthritis Res Ther 2017 ; 19 ( 1 ): 166 . doi: 10.1186/s13075-017-1375-0 https://dx.doi.org/10.1186/s13075-017-1375-0 . DOI: 10.1186/s13075-017-1375-0 http://doi.org/10.1186/s13075-017-1375-0
Rodriguez-Trillo A , Mosquera N , Pena C , et al. Non-canonical WNT5A signaling through RYK contributes to aggressive phenotype of the rheumatoid fibroblast-like synoviocytes . Front Immunol 2020 ; 11 : 555245 . doi: 10.3389/fimmu.2020.555245 https://dx.doi.org/10.3389/fimmu.2020.555245 . DOI: 10.3389/fimmu.2020.555245 http://doi.org/10.3389/fimmu.2020.555245 https://www.frontiersin.org/article/10.3389/fimmu.2020.555245/full https://www.frontiersin.org/article/10.3389/fimmu.2020.555245/full
Martineau X , Abed É , Martel-Pelletier J , et al. Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts . PLoS One 2017 ; 12 ( 8 ): e0180711 . doi: 10.1371/journal.pone.0180711 https://dx.doi.org/10.1371/journal.pone.0180711 . DOI: 10.1371/journal.pone.0180711 http://doi.org/10.1371/journal.pone.0180711 https://dx.plos.org/10.1371/journal.pone.0180711 https://dx.plos.org/10.1371/journal.pone.0180711
Cao W , Niu M , Tong Y , et al. Depleting the carboxy-terminus of human Wnt5a attenuates collagen-induced arthritis in DBA/1 mice . Biochem Biophys Res Commu 2018 ; 504 ( 4 ): 679 - 85 . doi: 10.1016/j.bbrc.2018.09.030 https://dx.doi.org/10.1016/j.bbrc.2018.09.030 . DOI: 10.1016/j.bbrc.2018.09.030 http://doi.org/10.1016/j.bbrc.2018.09.030 https://linkinghub.elsevier.com/retrieve/pii/S0006291X1831948X https://linkinghub.elsevier.com/retrieve/pii/S0006291X1831948X
Sharma S , Mahajan A , Mittal A , et al. Epigenetic and transcriptional regulation of osteoclastogenesis in the pathogenesis of skeletal diseases: A systematic review . Bone 2020 ; 138 : 115507 . doi: 10.1016/j.bone.2020.115507 https://dx.doi.org/10.1016/j.bone.2020.115507 . DOI: 10.1016/j.bone.2020.115507 http://doi.org/10.1016/j.bone.2020.115507 https://linkinghub.elsevier.com/retrieve/pii/S8756328220302878 https://linkinghub.elsevier.com/retrieve/pii/S8756328220302878
Satoh Y , Nakano K , Yoshinari H , et al. A case of refractory lupus nephritis complicated by psoriasis vulgaris that was controlled with secukinumab . Lupus 2018 ; 27 ( 7 ): 1202 - 6 . doi: 10.1177/0961203318762598 https://dx.doi.org/10.1177/0961203318762598 . DOI: 10.1177/0961203318762598 http://doi.org/10.1177/0961203318762598
Mohamed EA , Atef LM , Ibrahim GH , et al. Expression pattern of WNT5A among Egyptian patients with psoriasis treated with platelet-rich plasma versus conventional therapy: Toward a better understanding of the disease . Gene Reports 2021 ; 23 : 101114 . doi: 10.1016/j.genrep.2021.101114 https://dx.doi.org/10.1016/j.genrep.2021.101114 . DOI: 10.1016/j.genrep.2021.101114 http://doi.org/10.1016/j.genrep.2021.101114 https://linkinghub.elsevier.com/retrieve/pii/S2452014421000996 https://linkinghub.elsevier.com/retrieve/pii/S2452014421000996
Zhang Y , Tu C , Zhang D , et al. Wnt/β-Catenin and Wnt5a/Ca pathways regulate proliferation and apoptosis of keratinocytes in psoriasis lesions . Cell Physiol Biochem 2015 ; 36 ( 5 ): 1890 - 902 . doi: 10.1159/000430158 https://dx.doi.org/10.1159/000430158 . DOI: 10.1159/000430158 http://doi.org/10.1159/000430158
Vahav I , van den Broek LJ , Thon M , et al. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro . J Tissue Eng Regen Med 2020 ; 14 ( 6 ): 761 - 73 . doi: 10.1002/term.3039 https://dx.doi.org/10.1002/term.3039 . DOI: 10.1002/term.3039 http://doi.org/10.1002/term.3039
Nagira T , Nagahata-Ishiguro M , Tsuchiya T . Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression . Biomaterials 2007 ; 28 ( 5 ): 844 - 50 . doi: 10.1016/j.biomaterials.2006.09.041 https://dx.doi.org/10.1016/j.biomaterials.2006.09.041 . DOI: 10.1016/j.biomaterials.2006.09.041 http://doi.org/10.1016/j.biomaterials.2006.09.041
Verma D , Ekman AK , Bivik Eding C , et al . Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis . J Invest Dermatol 2018 ; 138 ( 5 ): 1088 - 93 . doi: 10.1016/j.jid.2017.11.036 https://dx.doi.org/10.1016/j.jid.2017.11.036 . DOI: S0022-202X(17)33280-3 http://doi.org/S0022-202X(17)33280-3
Parvin A , Yaghmaei P , Noureddini M , et al. Comparative effects of quercetin and hydroalcoholic extract of Otostegia persica boiss with atorvastatin on atherosclerosis complication in male wistar rats . Food Sci Nut 2019 ; 7 ( 9 ): 2875 - 87 . doi: 10.1002/fsn3.1136 https://dx.doi.org/10.1002/fsn3.1136 . DOI: 10.1002/fsn3.1136 http://doi.org/10.1002/fsn3.1136 https://onlinelibrary.wiley.com/toc/20487177/7/9 https://onlinelibrary.wiley.com/toc/20487177/7/9
Malgor R , Bhatt PM , Connolly BA , et al. Wnt5a, TLR2 and TLR4 are elevated in advanced human atherosclerotic lesions . Inflamm Res 2014 ; 63 ( 4 ): 277 - 85 . doi: 10.1007/s00011-013-0697-x https://dx.doi.org/10.1007/s00011-013-0697-x . DOI: 10.1007/s00011-013-0697-x http://doi.org/10.1007/s00011-013-0697-x
Zhang C-J , Zhu N , Liu Z , et al. Wnt5a/Ror 2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis . Biochem et Biophys Acta Mol Cell Biol Lipids 2020 ; 1865 ( 2 ): 158547 . doi: 10.1016/j.bbalip.2019.158547 https://dx.doi.org/10.1016/j.bbalip.2019.158547 . DOI: 10.1016/j.bbalip.2019.158547 http://doi.org/10.1016/j.bbalip.2019.158547
Fuster JJ , Zuriaga MA , Ngo DT , et al. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion . Diabetes 2015 ; 64 ( 4 ): 1235 - 48 . doi: 10.2337/db14-1164 https://dx.doi.org/10.2337/db14-1164 . DOI: 10.2337/db14-1164 http://doi.org/10.2337/db14-1164
Tong S , Du Y , Ji Q , et al. Expression of Sfrp5/Wnt5a in human epicardial adipose tissue and their relationship with coronary artery disease . Life Sci 2020 ; 245 : 117338 . doi: 10.1016/j.lfs.2020.117338 https://dx.doi.org/10.1016/j.lfs.2020.117338 . DOI: 10.1016/j.lfs.2020.117338 http://doi.org/10.1016/j.lfs.2020.117338 https://linkinghub.elsevier.com/retrieve/pii/S0024320520300850 https://linkinghub.elsevier.com/retrieve/pii/S0024320520300850
Yang L , Chu Y , Wang Y , et al. siRNA-mediated silencing of Wnt5a regulates inflammatory responses in atherosclerosis through the MAPK/NF-κB pathways . Int J Mol Med 2014 ; 34 ( 4 ): 1147 - 52 . doi: 10.3892/ijmm.2014.1860 https://dx.doi.org/10.3892/ijmm.2014.1860 . DOI: 10.3892/ijmm.2014.1860 http://doi.org/10.3892/ijmm.2014.1860
He XW , Zhao Y , Shi YH , et al. DNA methylation analysis identifies differentially methylated sites associated with early-onset intracranial atherosclerotic stenosis . J Atheroscler Thromb 2020 ; 27 ( 1 ): 71 - 99 . doi: 10.5551/jat.47704 https://dx.doi.org/10.5551/jat.47704 . DOI: 10.5551/jat.47704 http://doi.org/10.5551/jat.47704 https://www.jstage.jst.go.jp/article/jat/27/1/27_47704/_article https://www.jstage.jst.go.jp/article/jat/27/1/27_47704/_article
Pesaro AE , Bittencourt MS , Franken M , et al. The Finnish Diabetes Risk Score (FINDRISC), incident diabetes and low-grade inflammation . Diabetes Res Clin Pract 2021 ; 171 : 108558 . doi: 10.1016/j.diabres.2020.108558 https://dx.doi.org/10.1016/j.diabres.2020.108558 . DOI: 10.1016/j.diabres.2020.108558 http://doi.org/10.1016/j.diabres.2020.108558 https://linkinghub.elsevier.com/retrieve/pii/S0168822720308159 https://linkinghub.elsevier.com/retrieve/pii/S0168822720308159
Mir E , Moazzami M , Bijeh N , et al. Changes in SFRP5, WNT5A, HbA1c, BMI, PBF, and insulin resistance in men with type 2 diabetes after 12 weeks of combined exercise (HIIT and resistance) . Int J Diabetes Dev C 2020 ; 40 : 248 - 54 . doi: 10.1007/s13410-019-00790-7 https://dx.doi.org/10.1007/s13410-019-00790-7 . DOI: 10.1007/s13410-019-00790-7 http://doi.org/10.1007/s13410-019-00790-7
Carstensen-Kirberg M , Niersmann C , Roehrig K , et al. The molecular role of WNT5A and its antagonist SFRP 5 in gluconeogenesis and inflammation in human hepatocytes . Diabetes 2018 ; 67 ( Suppl 1 ): 1845 - 56 . doi: 10.2337/db18-1845-P https://dx.doi.org/10.2337/db18-1845-P . DOI: 10.2337/db18-1845-P http://doi.org/10.2337/db18-1845-P
Xu W , Jones PM , Geng H , et al. Islet stellate cells regulate insulin secretion via Wnt5a in Min6Cells . Int J Endocrinol 2020 ; 2020 : 4708132 . doi: 10.1155/2020/4708132 https://dx.doi.org/10.1155/2020/4708132 . DOI: 10.1155/2020/4708132 http://doi.org/10.1155/2020/4708132
Lin CL , Cheng H , Tung CW , et al. Simvastatin reverses high glucose-induced apoptosis of mesangial cells via modulation of Wnt signaling pathway . Am J Nephrol 2008 ; 28 ( 2 ): 290 - 7 . doi: 10.1159/000111142 https://dx.doi.org/10.1159/000111142 . DOI: 10.1159/000111142 http://doi.org/10.1159/000111142 https://www.karger.com/Article/FullText/111142 https://www.karger.com/Article/FullText/111142
Hsu YC , Lee PH , Lei CC , et al. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways . J Diabetes Investig 2015 ; 6 ( 1 ): 24 - 34 . doi: 10.1111/jdi.12244 https://dx.doi.org/10.1111/jdi.12244 . DOI: 10.1111/jdi.12244 http://doi.org/10.1111/jdi.12244 https://onlinelibrary.wiley.com/doi/10.1111/jdi.12244 https://onlinelibrary.wiley.com/doi/10.1111/jdi.12244
Relling I , Akcay G , Fangmann D , et al. Role of Wnt5a in metabolic inflammation in humans . J Clin Endocrinol Metab 2018 ; 103 ( 11 ): 4253 - 64 . doi: 10.1210/jc.2018-01007 https://dx.doi.org/10.1210/jc.2018-01007 . DOI: 10.1210/jc.2018-01007 http://doi.org/10.1210/jc.2018-01007
Li X , Wen J , Dong Y , et al. Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD 146 through non-canonical Wnt signaling . Cell Death Dis 2021 ; 12 ( 1 ): 92 . doi: 10.1038/s41419-020-03377-x https://dx.doi.org/10.1038/s41419-020-03377-x . DOI: 10.1038/s41419-020-03377-x http://doi.org/10.1038/s41419-020-03377-x https://doi.org/10.1038/s41419-020-03377-x https://doi.org/10.1038/s41419-020-03377-x
Burcher GC , Caspani G , Cooper M , et al. Post-traumatic stress symptoms following childhood sepsis: The impact of inflammation and corticosteroids . Eur Neuropsychopharmacol 2019 ; 29 ( Suppl 1 ): 463 - 4 . doi: 10.1016/j.euroneuro.2018.11.693 https://dx.doi.org/10.1016/j.euroneuro.2018.11.693 . DOI: 10.1016/j.euroneuro.2018.11.693 http://doi.org/10.1016/j.euroneuro.2018.11.693
Schulte DM , Kragelund D , Müller N , et al. The wingless-related integration site-5a/secreted frizzled-related protein-5 system is dysregulated in human sepsis . Clin Exp Immunol 2015 ; 180 ( 1 ): 90 - 7 . doi: 10.1111/cei.12484 https://dx.doi.org/10.1111/cei.12484 . DOI: 10.1111/cei.12484 http://doi.org/10.1111/cei.12484
Villar J , Cabrera-Benítez NE , Ramos-Nuez A , et al. Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury . Crit Care 2014 ; 18 ( 5 ): 568 . doi: 10.1186/s13054-014-0568-z https://dx.doi.org/10.1186/s13054-014-0568-z . DOI: 10.1186/s13054-014-0568-z http://doi.org/10.1186/s13054-014-0568-z http://ccforum.biomedcentral.com/articles/10.1186/s13054-014-0568-z http://ccforum.biomedcentral.com/articles/10.1186/s13054-014-0568-z
Chen M , Zhong W , Hu Y , et al. Wnt5a/FZD5/CaMKII signaling pathway mediates the effect of BML-111 on inflammatory reactions in sepsis . Int J Clin Exp Med 2015 ; 8 ( 10 ): 17824 - 9 .
Jati S , Kundu S , Chakraborty A , et al. Wnt5A signaling promotes defense against bacterial pathogens by activating a host autophagy circuit . Frontiers in Immunology 2018 ; 9 : 679 - 89 . doi: 10.3389/fimmu.2018.00679 https://dx.doi.org/10.3389/fimmu.2018.00679 . DOI: 10.3389/fimmu.2018.00679 http://doi.org/10.3389/fimmu.2018.00679
Cao L , Zhu T , Lang X , et al. Inhibiting DNA methylation improves survival in severe sepsis by regulating NF-κB pathway . Front in Immunol 2020 ; 11 : 1360 . doi: 10.3389/fimmu.2020.01360 https://dx.doi.org/10.3389/fimmu.2020.01360 . DOI: 10.3389/fimmu.2020.01360 http://doi.org/10.3389/fimmu.2020.01360 https://www.frontiersin.org/article/10.3389/fimmu.2020.01360/full https://www.frontiersin.org/article/10.3389/fimmu.2020.01360/full
Lorente-Pozo S , Navarrete P , Garzón MJ , et al. DNA methylation analysis to unravel altered genetic pathways underlying early onset and late onset neonatal sepsis. A Pilot Study . Front Immunol 2021 ; 12 : 622599 . doi: 10.3389/fimmu.2021.622599 https://dx.doi.org/10.3389/fimmu.2021.622599 . DOI: 10.3389/fimmu.2021.622599 http://doi.org/10.3389/fimmu.2021.622599 https://www.frontiersin.org/articles/10.3389/fimmu.2021.622599/full https://www.frontiersin.org/articles/10.3389/fimmu.2021.622599/full
Petit A , Knabe L , Khelloufi K , et al. Bronchial epithelial calcium metabolism impairment in smokers and chronic obstructive pulmonary disease. decreased ORAI 3 signaling . Am J Respir Cell Mol Biol 2019 ; 61 ( 4 ): 501 - 511 . doi: 10.1165/rcmb.2018-0228OC https://dx.doi.org/10.1165/rcmb.2018-0228OC . DOI: 10.1165/rcmb.2018-0228OC http://doi.org/10.1165/rcmb.2018-0228OC https://www.atsjournals.org/doi/10.1165/rcmb.2018-0228OC https://www.atsjournals.org/doi/10.1165/rcmb.2018-0228OC
Feller D , Kun J , Ruzsics I , et al. Cigarette smoke-induced pulmonary inflammation becomes systemic by circulating extracellular vesicles containing Wnt5a and inflammatory cytokines . Front immunol 2018 ; 9 : 1724 - 35 . doi: 10.3389/fimmu.2018.01724 https://dx.doi.org/10.3389/fimmu.2018.01724 . DOI: 10.3389/fimmu.2018.01724 http://doi.org/10.3389/fimmu.2018.01724
Zhu Z , Yin S , Wu K , et al. Downregulation of Sfrp5 in insulin resistant rats promotes macrophage-mediated pulmonary inflammation through activation of Wnt5a/JNK1 signaling . Biochem Biophys Res Commun 2018 ; 505 ( 2 ): 498 - 504 . doi: 10.1016/j.bbrc.2018.09.070 https://dx.doi.org/10.1016/j.bbrc.2018.09.070 . DOI: 10.1016/j.bbrc.2018.09.070 http://doi.org/10.1016/j.bbrc.2018.09.070 https://linkinghub.elsevier.com/retrieve/pii/S0006291X18319958 https://linkinghub.elsevier.com/retrieve/pii/S0006291X18319958
Chen YC , Tsai YH , Wang CC , et al. Epigenome-wide association study on asthma and chronic obstructive pulmonary disease overlap reveals aberrant DNA methylations related to clinical phenotypes . Sci Rep 2021 ; 11 ( 1 ): 5022 - 31 . doi: 10.1038/s41598-021-83185-1 https://dx.doi.org/10.1038/s41598-021-83185-1 . DOI: 10.1038/s41598-021-83185-1 http://doi.org/10.1038/s41598-021-83185-1 https://doi.org/10.1038/s41598-021-83185-1 https://doi.org/10.1038/s41598-021-83185-1
Moll M , Jackson VE , Yu B , et al. A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease . Am J Physiol Lung Cell Mol Physiol 2021 ; 321 ( 1 ): 1130 - 43 . doi: 10.1152/ajplung.00009.2021 https://dx.doi.org/10.1152/ajplung.00009.2021 . DOI: 10.1152/ajplung.00009.2021 http://doi.org/10.1152/ajplung.00009.2021
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621