FOLLOWUS
1. 1Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
2. 2Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
*chenyuexin@pumch.cn
收稿日期:2022-10-11,
录用日期:2023-07-24,
网络出版日期:2023-08-28,
纸质出版日期:2023-12-30
Scan QR Code
黄怀谷, 向涛, 陈跃鑫. 聚氨酯人工血管生物材料表面改性的策略进展[J]. 中国医学科学杂志(英文), 2023,38(4):279-285.
Huai-Gu Huang, Tao Xiang, Yue-Xin Chen. Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts[J]. Chinese medical sciences journal, 2023, 38(4): 279-285.
黄怀谷, 向涛, 陈跃鑫. 聚氨酯人工血管生物材料表面改性的策略进展[J]. 中国医学科学杂志(英文), 2023,38(4):279-285. DOI: 10.24920/004178.
Huai-Gu Huang, Tao Xiang, Yue-Xin Chen. Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts[J]. Chinese medical sciences journal, 2023, 38(4): 279-285. DOI: 10.24920/004178.
血管转流术是矫治血管缺损或良性狭窄的重要手段。由于自体血管或同种异体血管的来源有限,因此,临床上将人工血管生物材料作为重要的移植替代物。由移植物引起的蛋白质、血小板和细菌黏附,造成的移植血管狭窄、血栓形成及术后感染是血管转流术的主要并发症。聚氨酯是一种常用的人工血管生物材料。为了抵抗由移植物引起的蛋白质、血小板和细菌黏附,促进内皮细胞黏附,研究人员对聚氨酯材料进行了一系列的表面改性,以降低移植后受者的血栓形成风险。本综述总结了聚氨酯人工血管生物材料的表面改性机制及其策略。
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises
the constraints of autologous transplantation remain unavoidable. As a result
artificial vascular grafts must be developed. Adhesion of proteins
platelets and bacteria on implants can result in stenosis
thrombus formation
and postoperative infection
which can be fatal for an implantation. Polyurethane
as a commonly used biomaterial
has been modified in various ways to deal with the adhesions of proteins
platelets
and bacteria and to stimulate endothelium adhesion. In this review
we briefly summarize the mechanisms behind adhesions
overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts
and highlight the challenges that need to be addressed in future studies
aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.
Liu S , Li Y , Zeng X , et al . Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 Global Burden of Disease Study . JAMA Cardiol 2019 ; 4 ( 4 ): 342 - 52 . doi: 10.1001/jamacardio.2019.0295 https://dx.doi.org/10.1001/jamacardio.2019.0295 .
Li J , Chen Z , Yang X . State of the art of small-diameter vessel-polyurethane substitutes . Macromol Biosci 2019 ; 19 ( 5 ): e1800482 . doi: 10.1002/mabi.201800482 https://dx.doi.org/10.1002/mabi.201800482 .
Shabani VE , Gargiulo GD , Penkala S , et al . Peripheral vascular disease assessment in the lower limb: a review of current and emerging non-invasive diagnostic methods . Biomed Eng Online 2018 ; 17 ( 1 ): 61 . doi: 10.1186/s12938-018-0494-4 https://dx.doi.org/10.1186/s12938-018-0494-4 .
Hiob MA , She S , Muiznieks LD , et al . Biomaterials and modifications in the development of small-diameter vascular grafts . ACS Biomater Sci Eng 2017 ; 3 ( 5 ): 712 - 23 . doi: 10.1021/acsbiomaterials.6b00220 https://dx.doi.org/10.1021/acsbiomaterials.6b00220 . https://pubs.acs.org/doi/10.1021/acsbiomaterials.6b00220 https://pubs.acs.org/doi/10.1021/acsbiomaterials.6b00220
Wei Q , Becherer T , Angioletti-Uberti S , et al . Protein interactions with polymer coatings and biomaterials . Angew Chem Int Ed Engl 2014 ; 53 ( 31 ): 8004 - 31 . doi: 10.1002/anie.201400546 https://dx.doi.org/10.1002/anie.201400546 . https://onlinelibrary.wiley.com/toc/15213773/53/31 https://onlinelibrary.wiley.com/toc/15213773/53/31
Navas-Gomez K , Valero MF . Why polyurethanes have been used in the manufacture and design of cardiovascular devices: a systematic review . Materials (Basel) 2020 ; 13 ( 15 ): 3250 . doi: 10.3390/ma13153250 https://dx.doi.org/10.3390/ma13153250 . https://www.mdpi.com/1996-1944/13/15/3250 https://www.mdpi.com/1996-1944/13/15/3250
Obiweluozor FO , Emechebe GA , Kim DW , et al . Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: a review . Cardiovasc Eng Technol 2020 ; 11 ( 5 ): 495 - 521 . doi: 10.1007/s13239-020-00482-y https://dx.doi.org/10.1007/s13239-020-00482-y .
Zhang Z , Marois Y , Guidoin RG , et al . Vascugraft polyurethane arterial prosthesis as femoro-popliteal and femoro-peroneal bypasses in humans: pathological, structural and chemical analyses of four excised grafts . Biomaterials 1997 ; 18 ( 2 ): 113 - 24 . doi: 10.1016/s0142-9612(96)00054-3 https://dx.doi.org/10.1016/s0142-9612(96)00054-3 .
Adipurnama I , Yang MC , Ciach T , et al . Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review . Biomater Sci 2016 ; 5 ( 1 ): 22 - 37 . doi: 10.1039/c6bm00618c https://dx.doi.org/10.1039/c6bm00618c . http://xlink.rsc.org/?DOI=C6BM00618C http://xlink.rsc.org/?DOI=C6BM00618C
Recek N . Biocompatibility of plasma-treated polymeric implants . Materials (Basel) 2019 ; 12 ( 2 ): 240 . doi: 10.3390/ma12020240 https://dx.doi.org/10.3390/ma12020240 . http://www.mdpi.com/1996-1944/12/2/240 http://www.mdpi.com/1996-1944/12/2/240
Wendels S , Averous L . Biobased polyurethanes for biomedical applications . Bioact Mater 2021 ; 6 ( 4 ): 1083 - 106 . doi: 10.1016/j.bioactmat.2020.10.002 https://dx.doi.org/10.1016/j.bioactmat.2020.10.002 .
Vroman L . When blood is touched . Materials 2009 ; 2 ( 4 ): 1547 - 57 . doi: 10.3390/ma2041547 https://dx.doi.org/10.3390/ma2041547 . http://www.mdpi.com/1996-1944/2/4/1547 http://www.mdpi.com/1996-1944/2/4/1547
Veiseh O , Vegas AJ . Domesticating the foreign body response: recent advances and applications . Adv Drug Deliv Rev 2019 ; 144 : 148 - 61 . doi: 10.1016/j.addr.2019.08.010 https://dx.doi.org/10.1016/j.addr.2019.08.010 . https://linkinghub.elsevier.com/retrieve/pii/S0169409X19301504 https://linkinghub.elsevier.com/retrieve/pii/S0169409X19301504
Vroman L , Adams AL , Fischer GC , et al . Interaction of high molecular weight kininogen, factor Ⅻ, and fibrinogen in plasma at interfaces . Blood 1980 ; 55 ( 1 ): 156 - 9 . doi: 10.1182/blood.v55.1.156.bloodjournal551156 https://dx.doi.org/10.1182/blood.v55.1.156.bloodjournal551156 .
Jurk K , Kehrel BE . Platelets: physiology and biochemistry . Semin Thromb Hemost 2005 ; 31 ( 4 ): 381 - 92 . doi: 10.1055/s-2005-916671 https://dx.doi.org/10.1055/s-2005-916671 .
Wu Y , Simonovsky FI , Ratner BD , et al . The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion . J Biomed Mater Res A 2005 ; 74 ( 4 ): 722 - 38 . doi: 10.1002/jbm.a.30381 https://dx.doi.org/10.1002/jbm.a.30381 .
An YH , Friedman RJ . Concise review of mechanisms of bacterial adhesion to biomaterial surfaces . J Biomed Mater Res 1998 ; 43 ( 3 ): 338 - 48 . doi: 10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b https://dx.doi.org/10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b . http://doi.wiley.com/10.1002/%28ISSN%291097-4636 http://doi.wiley.com/10.1002/%28ISSN%291097-4636
Jesmer AH , Wylie RG . Controlling experimental parameters to improve characterization of biomaterial fouling . Front Chem 2020 ; 8 : 604236 . doi: 10.3389/fchem.2020.604236 https://dx.doi.org/10.3389/fchem.2020.604236 . https://www.frontiersin.org/articles/10.3389/fchem.2020.604236/full https://www.frontiersin.org/articles/10.3389/fchem.2020.604236/full
Nagel JA , Dickinson RB , Cooper SL . Bacterial adhesion to polyurethane surfaces in the presence of pre-adsorbed high molecular weight kininogen . J Biomater Sci Polym Ed 1996 ; 7 ( 9 ): 769 - 80 . doi: 10.1163/156856296x00110 https://dx.doi.org/10.1163/156856296x00110 . https://www.tandfonline.com/doi/full/10.1163/156856296X00110 https://www.tandfonline.com/doi/full/10.1163/156856296X00110
Chuang TW , Masters KS . Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides . Biomaterials 2009 ; 30 ( 29 ): 5341 - 51 . doi: 10.1016/j.biomaterials.2009.06.029 https://dx.doi.org/10.1016/j.biomaterials.2009.06.029 . https://linkinghub.elsevier.com/retrieve/pii/S0142961209006334 https://linkinghub.elsevier.com/retrieve/pii/S0142961209006334
Ruiz A , Rathnam KR , Masters KS . Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials . J Mater Sci Mater Med 2014 ; 25 ( 2 ): 487 - 98 . doi: 10.1007/s10856-013-5092-1 https://dx.doi.org/10.1007/s10856-013-5092-1 . http://link.springer.com/10.1007/s10856-013-5092-1 http://link.springer.com/10.1007/s10856-013-5092-1
Asadpour S , Ai J , Davoudi P , et al . In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts . Biomed Mater (Bristol) 2018 ; 13 ( 3 ): 035007 . doi: 10.1088/1748-605X/aaa8b6 https://dx.doi.org/10.1088/1748-605X/aaa8b6 .
Kumar N , Pruthi V . Potential applications of ferulic acid from natural sources . Biotechnol Rep (Amst) 2014 ; 4 : 86 - 93 . doi: 10.1016/j.btre.2014.09.002 https://dx.doi.org/10.1016/j.btre.2014.09.002 .
Butruk-Raszeja B , Trzaskowski M , Ciach T . Cell membrane-mimicking coating for blood-contacting polyurethanes . J Biomater Appl 2015 ; 29 ( 6 ): 801 - 12 . doi: 10.1177/0885328214549611 https://dx.doi.org/10.1177/0885328214549611 .
Ishihara K , Nomura H , Mihara T , et al . Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 1998 ; 39 ( 2 ): 323 - 30 . doi: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c https://dx.doi.org/10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c . http://doi.wiley.com/10.1002/%28ISSN%291097-4636 http://doi.wiley.com/10.1002/%28ISSN%291097-4636
Zheng M , Guo J , Li Q , et al . Syntheses and characterization of anti-thrombotic and anti-oxidative Gastrodin-modified polyurethane for vascular tissue engineering . Bioact Mater 2021 ; 6 ( 2 ): 404 - 19 . doi: 10.1016/j.bioactmat.2020.08.008 https://dx.doi.org/10.1016/j.bioactmat.2020.08.008 .
Reczynska K , Major R , Kopernik M , et al . Surface modification of polyurethane with eptifibatide-loaded degradable nanoparticles reducing risk of blood coagulation . Colloids Surf B Biointerfaces 2021 ; 201 : 111624 . doi: 10.1016/j.colsurfb.2021.111624 https://dx.doi.org/10.1016/j.colsurfb.2021.111624 . https://linkinghub.elsevier.com/retrieve/pii/S0927776521000680 https://linkinghub.elsevier.com/retrieve/pii/S0927776521000680
Fortin W , Bouchet M , Therasse E , et al . Negative in vivo results despite promising in vitro data with a coated compliant electrospun polyurethane vascular graft . J Surg Res 2022 ; 279 : 491 - 504 . doi: 10.1016/j.jss.2022.05.032 https://dx.doi.org/10.1016/j.jss.2022.05.032 . https://linkinghub.elsevier.com/retrieve/pii/S0022480422003493 https://linkinghub.elsevier.com/retrieve/pii/S0022480422003493
Habib S , Zavahir S , Abusrafa AE , et al . Slippery liquid-infused porous polymeric surfaces based on natural oil with antimicrobial effect . Polymers 2021 ; 13 ( 2 ): 206 . doi: 10.3390/polym13020206 https://dx.doi.org/10.3390/polym13020206 . https://www.mdpi.com/2073-4360/13/2/206 https://www.mdpi.com/2073-4360/13/2/206
Han DK , Jeong SY , Kim YH . Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes . J Biomed Mater Res 1989 ; 23 (A2 Suppl): 211 - 28 .
Han DK , Park K , Park KD , et al . In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft . Artif Organs 2006 ; 30 ( 12 ): 955 - 9 . doi: 10.1111/j.1525-1594.2006.00327.x https://dx.doi.org/10.1111/j.1525-1594.2006.00327.x . https://onlinelibrary.wiley.com/toc/15251594/30/12 https://onlinelibrary.wiley.com/toc/15251594/30/12
Liu Y , Inoue Y , Mahara A , et al . Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer . J Biomater Sci Polym Ed 2014 ; 25 ( 14-15 ): 1514 - 29 . doi: 10.1080/09205063.2014.920172 https://dx.doi.org/10.1080/09205063.2014.920172 .
Ga DH , Lim CM , Jang Y , et al . Surface-modifying effect of Zwitterionic polyurethane oligomers complexed with metal ions on blood compatibility . Tissue Eng Regen Med 2022 ; 19 ( 1 ): 35 - 47 . doi: 10.1007/s13770-021-00400-w https://dx.doi.org/10.1007/s13770-021-00400-w .
Abreu-Rejon AD , Herrera-Kao W , May-Pat A , et al . Effect of PEG grafting density on surface properties of polyurethane substrata and the viability of osteoblast and fibroblast cells . J Mater Sci Mater Med 2022 ; 33 ( 6 ): 45 . doi: 10.1007/s10856-022-06668-1 https://dx.doi.org/10.1007/s10856-022-06668-1 .
Qiu M , Huang S , Luo C , et al . Pharmacological and clinical application of heparin progress: an essential drug for modern medicine . Biomed Pharmacother 2021 ; 139 : 111561 . doi: 10.1016/j.biopha.2021.111561 https://dx.doi.org/10.1016/j.biopha.2021.111561 .
Caracciolo PC , Rial-Hermida MI , Montini-Ballarin F , et al . Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts . Mater Sci Eng C Mater Biol Appl 2017 ; 75 : 1115 - 27 . doi: 10.1016/j.msec.2017.02.151 https://dx.doi.org/10.1016/j.msec.2017.02.151 . https://linkinghub.elsevier.com/retrieve/pii/S0928493116320124 https://linkinghub.elsevier.com/retrieve/pii/S0928493116320124
Caracciolo PC , Diaz-Rodriguez P , Ardao I , et al . Evaluation of human umbilical vein endothelial cells growth onto heparin-modified electrospun vascular grafts . Int J Biol Macromol 2021 ; 179 : 567 - 75 . doi: 10.1016/j.ijbiomac.2021.03.008 https://dx.doi.org/10.1016/j.ijbiomac.2021.03.008 .
Mi HY , Jing X , Li ZT , et al . Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity . J Biomed Mater Res B Appl Biomater 2019 ; 107 ( 7 ): 2397 - 408 . doi: 10.1002/jbm.b.34333 https://dx.doi.org/10.1002/jbm.b.34333 . https://onlinelibrary.wiley.com/toc/15524981/107/7 https://onlinelibrary.wiley.com/toc/15524981/107/7
Yan S , Napiwocki B , Xu Y , et al . Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane . Mater Sci Eng C Mater Biol Appl 2020 ; 107 : 110311 . doi: 10.1016/j.msec.2019.110311 https://dx.doi.org/10.1016/j.msec.2019.110311 . https://linkinghub.elsevier.com/retrieve/pii/S092849311932140X https://linkinghub.elsevier.com/retrieve/pii/S092849311932140X
Davoudi P , Assadpour S , Derakhshan MA , et al . Biomimetic modification of polyurethane-based nanofibrous vascular grafts: a promising approach towards stable endothelial lining . Mater Sci Eng C Mater Biol Appl 2017 ; 80 : 213 - 21 . doi: 10.1016/j.msec.2017.05.140 https://dx.doi.org/10.1016/j.msec.2017.05.140 . https://linkinghub.elsevier.com/retrieve/pii/S0928493117301534 https://linkinghub.elsevier.com/retrieve/pii/S0928493117301534
Ming H , Tian C , He N , et al . Mussel-inspired polyurethane coating for bio-surface functionalization to enhance substrate adhesion and cell biocompatibility . J Biomater Sci Polym Ed 2022 ; 33 ( 14 ): 1811 - 27 . doi: 10.1080/09205063.2022.2085342 https://dx.doi.org/10.1080/09205063.2022.2085342 . https://www.tandfonline.com/doi/full/10.1080/09205063.2022.2085342 https://www.tandfonline.com/doi/full/10.1080/09205063.2022.2085342
Chen X , Gu H , Lyu Z , et al . Sulfonate groups and saccharides as essential structural elements in heparin-mimicking polymers used as surface modifiers: optimization of relative contents for antithrombogenic properties . ACS Appl Mater Interfaces 2018 ; 10 ( 1 ): 1440 - 9 . doi: 10.1021/acsami.7b16723 https://dx.doi.org/10.1021/acsami.7b16723 . https://pubs.acs.org/doi/10.1021/acsami.7b16723 https://pubs.acs.org/doi/10.1021/acsami.7b16723
Fang J , Zhang J , Du J , et al . Orthogonally functionalizable polyurethane with subsequent modification with heparin and endothelium-inducing peptide aiming for vascular reconstruction . ACS Appl Mater Interfaces 2016 ; 8 ( 23 ): 14442 - 52 . doi: 10.1021/acsami.6b04289 https://dx.doi.org/10.1021/acsami.6b04289 . https://pubs.acs.org/doi/10.1021/acsami.6b04289 https://pubs.acs.org/doi/10.1021/acsami.6b04289
Choi WS , Joung YK , Lee Y , et al . Enhanced patency and endothelialization of small-caliber vascular grafts fabricated by coimmobilization of heparin and cell-adhesive peptides . ACS Appl Mater Interfaces 2016 ; 8 ( 7 ): 4336 - 46 . doi: 10.1021/acsami.5b12052 https://dx.doi.org/10.1021/acsami.5b12052 . https://pubs.acs.org/doi/10.1021/acsami.5b12052 https://pubs.acs.org/doi/10.1021/acsami.5b12052
Butruk-Raszeja BA , Dresler MS , Kuzminska A , et al . Endothelialization of polyurethanes: surface silanization and immobilization of REDV peptide . Colloids Surf B Biointerfaces 2016 ; 144 : 335 - 43 . doi: 10.1016/j.colsurfb.2016.04.017 https://dx.doi.org/10.1016/j.colsurfb.2016.04.017 . https://linkinghub.elsevier.com/retrieve/pii/S0927776516302740 https://linkinghub.elsevier.com/retrieve/pii/S0927776516302740
Ding X , Chin W , Lee CN , et al . Peptide-functionalized polyurethane coatings prepared via grafting-to strategy to selectively promote endothelialization . Adv Healthc Mater 2018 ; 7 ( 5 ): 1700944 . doi: 10.1002/adhm.201700944 https://dx.doi.org/10.1002/adhm.201700944 . https://onlinelibrary.wiley.com/toc/21922659/7/5 https://onlinelibrary.wiley.com/toc/21922659/7/5
Kuzminska A , Wojciechowska A , Butruk-Raszeja BA . Vascular polyurethane prostheses modified with a bioactive coating-physicochemical, mechanical and biological properties . Int J Mol Sci 2021 ; 22 ( 22 ): 12183 . doi: 10.3390/ijms222212183 https://dx.doi.org/10.3390/ijms222212183 . https://www.mdpi.com/1422-0067/22/22/12183 https://www.mdpi.com/1422-0067/22/22/12183
Avci-Adali M , Ziemer G , Wendel HP . Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization—a review of current strategies . Biotechnol Adv 2010 ; 28 ( 1 ): 119 - 29 . doi: 10.1016/j.biotechadv.2009.10.005 https://dx.doi.org/10.1016/j.biotechadv.2009.10.005 .
关联资源
相关文章
相关作者
相关机构