FOLLOWUS
1. 1Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Affiliated Nanhua Hospital, Hengyang Medical School & University of South China, Hengyang, Hunan 421002, China
2. 2Department of Gastroenterology, Affiliated Nanhua Hospital, Hengyang Medical School & University of South China, Hengyang, Hunan 421002, China
3. 3Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical School & University of South China, Hengyang, Hunan 421002, China
4. 4Department of General Practice, Affiliated Nanhua Hospital, Hengyang Medical School & University of South China, Hengyang, Hunan 421002, China
*yxf009988@sina.com
纸质出版日期:2023-12-30,
网络出版日期:2023-12-15,
收稿日期:2023-03-02,
录用日期:2023-08-12
Scan QR Code
汪远远, 林海连, 王克浪, 等. 肠道微生物及其代谢产物对代谢相关性脂肪肝病发生发展的影响[J]. 中国医学科学杂志(英文), 2023,38(4):286-296.
YUAN-YUAN WANG, HAI-LIAN LIN, KE-LANG WANG, et al. Influence of Gut Microbiota and its Metabolites on Progression of Metabolic Associated Fatty Liver Disease. [J]. Chinese medical sciences journal, 2023, 38(4): 286-296.
汪远远, 林海连, 王克浪, 等. 肠道微生物及其代谢产物对代谢相关性脂肪肝病发生发展的影响[J]. 中国医学科学杂志(英文), 2023,38(4):286-296. DOI: 10.24920/004220.
YUAN-YUAN WANG, HAI-LIAN LIN, KE-LANG WANG, et al. Influence of Gut Microbiota and its Metabolites on Progression of Metabolic Associated Fatty Liver Disease. [J]. Chinese medical sciences journal, 2023, 38(4): 286-296. DOI: 10.24920/004220.
由于生活方式和饮食习惯的改变,代谢相关性脂肪肝已成为全球流行的慢性肝病。研究表明:肠道微生物群及其代谢产物在代谢相关性脂肪肝的发病机制中起着至关重要的作用。了解肠道微生物群及其代谢产物在代谢相关性脂肪肝中的功能有助于阐明病理机制、确定诊断标志物以及开发治疗药物或益生菌。在此,我们回顾了肠道微生物群及其代谢产物对代谢相关性脂肪肝的致病机理,并从肠道微生物的角度探讨治疗代谢相关性脂肪肝的可行性。
Metabolic associated fatty liver disease (MAFLD) has become a prevalent chronic liver disease worldwide because of lifestyle and dietary changes. Gut microbiota and its metabolites have been shown to play a critical role in the pathogenesis of MAFLD. Understanding of the function of gut microbiota and its metabolites in MAFLD may help to elucidate pathological mechanisms
identify diagnostic markers
and develop drugs or probiotics for the treatment of MAFLD. Here we review the pathogenesis of MAFLD by gut microbiota and its metabolites and discuss the feasibility of treating MAFLD from the perspective of gut microbes.
代谢相关性脂肪肝肠道微生物非酒精性脂肪肝肝纤维化肝细胞癌
metabolic associated fatty liver diseaseintestinal microorganismsnon-alcoholic fatty liver diseaseliver fibrosishepatocellular carcinoma
Sherif ZA, Saeed A, Ghavimi S, et al. Global epidemiology of nonalcoholic fatty liver disease and perspectives on US minority populations. Dig Dis Sci 2016; 61(5):1214-25. doi: 10.1007/s10620-016-4143-0https://dx.doi.org/10.1007/s10620-016-4143-0. http://link.springer.com/10.1007/s10620-016-4143-0http://link.springer.com/10.1007/s10620-016-4143-0
Eslam M, Sanyal AJ, George J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158(7):1999-2014. e1. doi: 10.1053/j.gastro.2019.11.312https://dx.doi.org/10.1053/j.gastro.2019.11.312.
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8):e1002533. doi: 10.1371/journal.pbio.1002533https://dx.doi.org/10.1371/journal.pbio.1002533. https://dx.plos.org/10.1371/journal.pbio.1002533https://dx.plos.org/10.1371/journal.pbio.1002533
Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25(5):1054-62.e5. doi: 10.1016/j.cmet.2017.04.001https://dx.doi.org/10.1016/j.cmet.2017.04.001.
Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63(9):1513-21. doi: 10.1136/gutjnl-2014-306928https://dx.doi.org/10.1136/gutjnl-2014-306928.
Attia D, Abdel Alem S, El-Akel W, et al. Prevalence and clinical characteristics of patients with metabolic dysfunction-associated fatty liver disease with hepatitis C virus infection-a population-based study. Aliment Pharmacol Ther 2022; 56(11-12):1581-90. doi: 10.1111/apt.17233https://dx.doi.org/10.1111/apt.17233. https://onlinelibrary.wiley.com/toc/13652036/56/11-12https://onlinelibrary.wiley.com/toc/13652036/56/11-12
Davis T. Diabetes and metabolic dysfunction-associated fatty liver disease. Metabolism 2021; 123:154868. doi:10.1016/j.metabol.2021.154868https://dx.doi.org/10.1016/j.metabol.2021.154868. https://linkinghub.elsevier.com/retrieve/pii/S0026049521001682https://linkinghub.elsevier.com/retrieve/pii/S0026049521001682
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73(1):202-9. doi: 10.1016/j.jhep.2020.03.039https://dx.doi.org/10.1016/j.jhep.2020.03.039.
Abenavoli L, Scarlata G, Scarpellini E, et al. Metabolic-dysfunction-associated fatty liver disease and gut microbiota: from fatty liver to dysmetabolic syndrome. Medicina (Kaunas) 2023; 59(3): 594. doi: 10.3390/medicina59030594https://dx.doi.org/10.3390/medicina59030594.
Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 2018; 50(4):747-57. doi: 10.1249/MSS.0000000000001495https://dx.doi.org/10.1249/MSS.0000000000001495.
Li D, Li Y, Yang S, et al. Diet-gut microbiota-epigenetics in metabolic diseases: from mechanisms to therapeutics. Biomed Pharmacother 2022; 153:113290. doi: 10.1016/j.biopha.2022.113290https://dx.doi.org/10.1016/j.biopha.2022.113290. https://linkinghub.elsevier.com/retrieve/pii/S0753332222006795https://linkinghub.elsevier.com/retrieve/pii/S0753332222006795
Nagata N, Nishijima S, Miyoshi-Akiyama T, et al. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology 2022; 163(4):1038-52. doi: 10.1053/j.gastro.2022.06.070https://dx.doi.org/10.1053/j.gastro.2022.06.070.
Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut 2020; 69(8):1510-9. doi: 10.1136/gutjnl-2019-320204https://dx.doi.org/10.1136/gutjnl-2019-320204.
Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22(4):658-68. doi: 10.1016/j.cmet.2015.07.026https://dx.doi.org/10.1016/j.cmet.2015.07.026.
Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63(3):764-75. doi: 10.1002/hep.28356https://dx.doi.org/10.1002/hep.28356.
Lin H, An Y, Tang H, et al. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem 2019; 67(13):3624-32. doi: 10.1021/acs.jafc.9b00249https://dx.doi.org/10.1021/acs.jafc.9b00249. https://pubs.acs.org/doi/10.1021/acs.jafc.9b00249https://pubs.acs.org/doi/10.1021/acs.jafc.9b00249
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016; 24(1):41-50. doi: 10.1016/j.cmet.2016.05.005https://dx.doi.org/10.1016/j.cmet.2016.05.005.
Gasaly N, de Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol 2021; 12:658354. doi: 10.3389/fimmu.2021.658354https://dx.doi.org/10.3389/fimmu.2021.658354. https://www.frontiersin.org/articles/10.3389/fimmu.2021.658354/fullhttps://www.frontiersin.org/articles/10.3389/fimmu.2021.658354/full
Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165(6):1332-45. doi: 10.1016/j.cell.2016.05.041https://dx.doi.org/10.1016/j.cell.2016.05.041.
Campaniello D, Corbo MR, Sinigaglia M, et al. How diet and physical activity modulate gut microbiota: evidence and perspectives. Nutrients 2022; 14(12): 2456. doi: 10.3390/nu14122456https://dx.doi.org/10.3390/nu14122456. https://www.mdpi.com/2072-6643/14/12/2456https://www.mdpi.com/2072-6643/14/12/2456
Wegierska AE, Charitos IA, Topi S, et al. The connection between physical exercise and gut microbiota: implications for competitive sports athletes. Sports Med 2022; 52(10):2355-69. doi: 10.1007/s40279-022-01696-xhttps://dx.doi.org/10.1007/s40279-022-01696-x.
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, et al. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab 2021; 33(5):873-87. doi: 10.1016/j.cmet.2021.03.015https://dx.doi.org/10.1016/j.cmet.2021.03.015.
Viloria M, Lara-Padilla E, Campos-Rodríguez R, et al. Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest 2011; 40(6):640-56. doi: 10.3109/08820139.2011.575425https://dx.doi.org/10.3109/08820139.2011.575425.
Amrane S, Raoult D, Lagier JC. Metagenomics, culturomics, and the human gut microbiota. Expert Rev Anti Infect Ther 2018; 16(5):373-5. doi: 10.1080/14787210.2018.1467268https://dx.doi.org/10.1080/14787210.2018.1467268.
Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell 2014; 159(4):789-99. doi: 10.1016/j.cell.2014.09.053https://dx.doi.org/10.1016/j.cell.2014.09.053.
Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med 2014; 6(12): 107. doi: 10.1186/s13073-014-0107-1https://dx.doi.org/10.1186/s13073-014-0107-1.
Lopera-Maya EA, Kurilshikov A, van der Graaf A, et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat Genet 2022; 54(2):143-51. doi: 10.1038/s41588-021-00992-yhttps://dx.doi.org/10.1038/s41588-021-00992-y.
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555(7695):210-5. doi: 10.1038/nature25973https://dx.doi.org/10.1038/nature25973. https://www.nature.com/articles/nature25973https://www.nature.com/articles/nature25973
Lang S, Martin A, Zhang X, et al. Combined analysis of gut microbiota, diet and PNPLA 3 polymorphism in biopsy-proven non-alcoholic fatty liver disease. Liver Int 2021; 41(7):1576-91. doi: 10.1111/liv.14899https://dx.doi.org/10.1111/liv.14899. https://onlinelibrary.wiley.com/toc/14783231/41/7https://onlinelibrary.wiley.com/toc/14783231/41/7
Li H, Liang J, Han M, et al. Sequentially fermented dealcoholized apple juice intervenes fatty liver induced by high-fat diets via modulation of intestinal flora and gene pathways. Food Res Int 2022; 156:111180. doi: 10.1016/j.foodres.2022.111180https://dx.doi.org/10.1016/j.foodres.2022.111180. https://linkinghub.elsevier.com/retrieve/pii/S096399692200237Xhttps://linkinghub.elsevier.com/retrieve/pii/S096399692200237X
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 2019; 7(4):313-24. doi: 10.1016/S2213-8587(18)30154-2https://dx.doi.org/10.1016/S2213-8587(18)30154-2. https://linkinghub.elsevier.com/retrieve/pii/S2213858718301542https://linkinghub.elsevier.com/retrieve/pii/S2213858718301542
Badgeley A, Anwar H, Modi K, et al. Effect of probiotics and gut microbiota on anti-cancer drugs: mechanistic perspectives. Biochim Biophys Acta Rev Cancer 2021; 1875(1): 188494. doi: 10.1016/j.bbcan.2020.188494https://dx.doi.org/10.1016/j.bbcan.2020.188494. https://linkinghub.elsevier.com/retrieve/pii/S0304419X20302134https://linkinghub.elsevier.com/retrieve/pii/S0304419X20302134
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65(11):1906-15. doi: 10.1136/gutjnl-2016-312297https://dx.doi.org/10.1136/gutjnl-2016-312297.
Rogers M, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect 2016; 22(2): 178.e1-178.e9. doi: 10.1016/j.cmi.2015.10.003https://dx.doi.org/10.1016/j.cmi.2015.10.003.
Boer CG, Radjabzadeh D, Medina-Gomez C, et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 2019; 10(1): 4881. doi: 10.1038/s41467-019-12873-4https://dx.doi.org/10.1038/s41467-019-12873-4.
Socała K, Doboszewska U, Szopa A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. doi: 10.1016/j.phrs.2021.105840https://dx.doi.org/10.1016/j.phrs.2021.105840. https://linkinghub.elsevier.com/retrieve/pii/S1043661821004242https://linkinghub.elsevier.com/retrieve/pii/S1043661821004242
Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res 2020; 127(4):553-70. doi: 10.1161/CIRCRESAHA.120.316242https://dx.doi.org/10.1161/CIRCRESAHA.120.316242.
Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2019; 69(1):107-20. doi: 10.1002/hep.30036https://dx.doi.org/10.1002/hep.30036.
Wong VW, Tse CH, Lam TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One 2013; 8(4): e62885. doi: 10.1371/journal.pone.0062885https://dx.doi.org/10.1371/journal.pone.0062885. https://dx.plos.org/10.1371/journal.pone.0062885https://dx.plos.org/10.1371/journal.pone.0062885
Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58(1):120-7. doi: 10.1002/hep.26319https://dx.doi.org/10.1002/hep.26319.
Shen F, Zheng RD, Sun XQ, et al. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2017; 16(4):375-81. doi: 10.1016/S1499-3872(17)60019-5https://dx.doi.org/10.1016/S1499-3872(17)60019-5. https://linkinghub.elsevier.com/retrieve/pii/S1499387217600195https://linkinghub.elsevier.com/retrieve/pii/S1499387217600195
Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57(2):601-9. doi: 10.1002/hep.26093https://dx.doi.org/10.1002/hep.26093.
Hoyles L, Fernández-Real JM, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018; 24(7):1070-80. doi: 10.1038/s41591-018-0061-3https://dx.doi.org/10.1038/s41591-018-0061-3.
Jiao N, Baker SS, Chapa-Rodriguez A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018; 67(10):1881-91. doi: 10.1136/gutjnl-2017-314307https://dx.doi.org/10.1136/gutjnl-2017-314307.
Lei Y, Tang L, Chen Q, et al. Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nat Commun 2022; 13(1): 6862. doi: 10.1038/s41467-022-34671-1https://dx.doi.org/10.1038/s41467-022-34671-1.
Al Rajabi A, Castro GS, da Silva RP, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. J Nutr 2014; 144(3):252-7. doi: 10.3945/jn.113.185389https://dx.doi.org/10.3945/jn.113.185389.
Warrier M, Shih DM, Burrows AC, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015; 10(3):326-38. doi: 10.1016/j.celrep.2014.12.036https://dx.doi.org/10.1016/j.celrep.2014.12.036.
Tricò D, Biancalana E, Solini A. Protein and amino acids in nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2021; 24(1):96-101. doi: 10.1097/MCO.0000000000000706https://dx.doi.org/10.1097/MCO.0000000000000706. https://journals.lww.com/10.1097/MCO.0000000000000706https://journals.lww.com/10.1097/MCO.0000000000000706
Sookoian S, Salatino A, Castaño GO, et al. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut 2020; 69(8):1483-91. doi: 10.1136/gutjnl-2019-318811https://dx.doi.org/10.1136/gutjnl-2019-318811.
Caussy C, Hsu C, Lo MT, et al. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 2018; 68(3):918-32. doi: 10.1002/hep.29892https://dx.doi.org/10.1002/hep.29892.
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146(6):1513-24. doi: 10.1053/j.gastro.2014.01.020https://dx.doi.org/10.1053/j.gastro.2014.01.020.
Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011; 54(2):562-72. doi: 10.1002/hep.24423https://dx.doi.org/10.1002/hep.24423.
Liu R, Zhang C, Shi Y, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 2017; 8:324. doi: 10.3389/fmicb.2017.00324https://dx.doi.org/10.3389/fmicb.2017.00324.
Norat T, Bingham S, Ferrari P, et al. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 2005; 97(12):906-16. doi: 10.1093/jnci/dji164https://dx.doi.org/10.1093/jnci/dji164.
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66(1):70-8. doi: 10.1136/gutjnl-2015-309800https://dx.doi.org/10.1136/gutjnl-2015-309800.
Xie G, Jiang R, Wang X, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 2021; 66:103290. doi: 10.1016/j.ebiom.2021.103290https://dx.doi.org/10.1016/j.ebiom.2021.103290. https://linkinghub.elsevier.com/retrieve/pii/S2352396421000839https://linkinghub.elsevier.com/retrieve/pii/S2352396421000839
Mouries J, Brescia P, Silvestri A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71(6):1216-28. doi: 10.1016/j.jhep.2019.08.005https://dx.doi.org/10.1016/j.jhep.2019.08.005.
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, et al. The gut barrier, intestinal microbiota, and liver disease: molecular mechanisms and strategies to manage. Int J Mol Sci 2020; 21(21): 8351. doi: 10.3390/ijms21218351https://dx.doi.org/10.3390/ijms21218351. https://www.mdpi.com/1422-0067/21/21/8351https://www.mdpi.com/1422-0067/21/21/8351
Crawford CK, Lopez Cervantes V, Quilici ML, et al. Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier. Sci Rep 2022; 12(1): 14578. doi: 10.1038/s41598-022-18771-yhttps://dx.doi.org/10.1038/s41598-022-18771-y.
Khanmohammadi S, Kuchay MS. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacol Res 2022; 185:106507. doi: 10.1016/j.phrs.2022.106507https://dx.doi.org/10.1016/j.phrs.2022.106507. https://linkinghub.elsevier.com/retrieve/pii/S1043661822004534https://linkinghub.elsevier.com/retrieve/pii/S1043661822004534
Hu J, Wang H, Li X, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics 2020; 10(21):9702-20. doi: 10.7150/thno.44297https://dx.doi.org/10.7150/thno.44297. https://www.thno.org/v10p9702.htmhttps://www.thno.org/v10p9702.htm
van Kleef LA, de Knegt RJ, Brouwer WP. Metabolic dysfunction-associated fatty liver disease and excessive alcohol consumption are both independent risk factors for mortality. Hepatology 2023; 77(3):942-8. doi: 10.1002/hep.32642https://dx.doi.org/10.1002/hep.32642. https://journals.lww.com/10.1002/hep.32642https://journals.lww.com/10.1002/hep.32642
Ding RB, Tian K, Cao YW, et al. Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. J Agric Food Chem 2015; 63(9):2413-22. doi: 10.1021/jf502990nhttps://dx.doi.org/10.1021/jf502990n. https://pubs.acs.org/doi/10.1021/jf502990nhttps://pubs.acs.org/doi/10.1021/jf502990n
Liu J, Wang X, Peng Z, et al. The effects of insulin pre-administration in mice exposed to ethanol: alleviating hepatic oxidative injury through anti-oxidative, anti-apoptotic activities and deteriorating hepatic steatosis through SRBEP-1c activation. Int J Biol Sci 2015; 11(5):569-86. doi: 10.7150/ijbs.11039https://dx.doi.org/10.7150/ijbs.11039.
Xu S, Jeong SJ, Li G, et al. Repeated ethanol exposure influences key enzymes in cholesterol and lipid homeostasis via the AMPK pathway in the rat prefrontal cortex. Alcohol 2020; 85:49-56. doi: 10.1016/j.alcohol.2019.11.004https://dx.doi.org/10.1016/j.alcohol.2019.11.004. https://linkinghub.elsevier.com/retrieve/pii/S0741832919301909https://linkinghub.elsevier.com/retrieve/pii/S0741832919301909
Correnti JM, Gottshall L, Lin A, et al. Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8(1):12923. doi: 10.1038/s41598-018-31025-0https://dx.doi.org/10.1038/s41598-018-31025-0.
Donde H, Ghare S, Joshi-Barve S, et al. Tributyrin inhibits ethanol-induced epigenetic repression of CPT-1A and attenuates hepatic steatosis and injury. Cell Mol Gastroenterol Hepatol 2020; 9(4):569-85. doi: 10.1016/j.jcmgh.2019.10.005https://dx.doi.org/10.1016/j.jcmgh.2019.10.005.
Gillard J, Clerbaux LA, Nachit M, et al. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Rep 2022; 4(1): 100387. doi: 10.1016/j.jhepr.2021.100387https://dx.doi.org/10.1016/j.jhepr.2021.100387.
Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 2021; 373(6556):813-8. doi: 10.1126/science.aba3683https://dx.doi.org/10.1126/science.aba3683. https://www.science.org/doi/10.1126/science.aba3683https://www.science.org/doi/10.1126/science.aba3683
Handelman SK, Puentes YM, Kuppa A, et al. Population-based meta-analysis and gene-set enrichment identifies FXR/RXR pathway as common to fatty liver disease and serum lipids. Hepatol Commun 2022; 6(11):3120-31. doi: 10.1002/hep4.2066https://dx.doi.org/10.1002/hep4.2066.
Kim DJ, Chung H, Ji SC, et al. Ursodeoxycholic acid exerts hepatoprotective effects by regulating amino acid, flavonoid, and fatty acid metabolic pathways. Metabolomics 2019; 15(3): 30. doi: 10.1007/s11306-019-1494-5https://dx.doi.org/10.1007/s11306-019-1494-5.
Liu L, Yang M, Dong W, et al. Gut dysbiosis and abnormal bile acid metabolism in colitis-associated cancer. Gastroenterol Res Pract 2021; 2021:6645970. doi: 10.1155/2021/6645970https://dx.doi.org/10.1155/2021/6645970.
Spatz M, Ciocan D, Merlen G, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis. JHEP Rep 2021; 3(2): 100230. doi: 10.1016/j.jhepr.2021.100230https://dx.doi.org/10.1016/j.jhepr.2021.100230.
Hong T, Zou J, He Y, et al. Bisphenol A induced hepatic steatosis by disturbing bile acid metabolism and FXR/TGR5 signaling pathways via remodeling the gut microbiota in CD-1 mice. Sci Total Environ 2023; 889:164307. doi: 10.1016/j.scitotenv.2023.164307https://dx.doi.org/10.1016/j.scitotenv.2023.164307. https://linkinghub.elsevier.com/retrieve/pii/S0048969723029285https://linkinghub.elsevier.com/retrieve/pii/S0048969723029285
Li Y, Xia D, Chen J, et al. Dietary fibers with different viscosity regulate lipid metabolism via ampk pathway: roles of gut microbiota and short-chain fatty acid. Poult Sci 2022; 101(4): 101742. doi: 10.1016/j.psj.2022.101742https://dx.doi.org/10.1016/j.psj.2022.101742. https://linkinghub.elsevier.com/retrieve/pii/S0032579122000475https://linkinghub.elsevier.com/retrieve/pii/S0032579122000475
Yue X, Wen S, Long-Kun D, et al. Three important short-chain fatty acids (SCFAs) attenuate the inflammatory response induced by 5-FU and maintain the integrity of intestinal mucosal tight junction. BMC Immunol 2022; 23(1): 19. doi: 10.1186/s12865-022-00495-3https://dx.doi.org/10.1186/s12865-022-00495-3.
Zhang XY, Chen J, Yi K, et al. Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut Microbes 2020; 12(1):1-18. doi: 10.1080/19490976.2020.1842990https://dx.doi.org/10.1080/19490976.2020.1842990.
Cao X, Zolnikova O, Maslennikov R, et al. Differences in fecal short-chain fatty acids between alcoholic fatty liver-induced cirrhosis and non-alcoholic (metabolic-associated) fatty liver-induced cirrhosis. Metabolites 2023; 13(7): 859. doi: 10.3390/metabo13070859https://dx.doi.org/10.3390/metabo13070859. https://www.mdpi.com/2218-1989/13/7/859https://www.mdpi.com/2218-1989/13/7/859
Li X, Wang TX, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 2020; 40(6):1378-94. doi: 10.1111/liv.14428https://dx.doi.org/10.1111/liv.14428.
Somm E, Montandon SA, Loizides-Mangold U, et al. The GLP-1R agonist liraglutide limits hepatic lipotoxicity and inflammatory response in mice fed a methionine-choline deficient diet. Transl Res 2021; 227:75-88. doi: 10.1016/j.trsl.2020.07.008https://dx.doi.org/10.1016/j.trsl.2020.07.008.
Tricò D, Biancalana E, Solini A. Protein and amino acids in nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2021; 24(1):96-101. doi: 10.1097/MCO.0000000000000706https://dx.doi.org/10.1097/MCO.0000000000000706. https://journals.lww.com/10.1097/MCO.0000000000000706https://journals.lww.com/10.1097/MCO.0000000000000706
Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 2019; 68(9):1730-46. doi: 10.2337/db18-0927https://dx.doi.org/10.2337/db18-0927.
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535(7612):376-81. doi: 10.1038/nature18646https://dx.doi.org/10.1038/nature18646.
Kakazu E, Sano A, Morosawa T, et al. Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease. Hepatol Res 2019; 49(8):860-71. doi: 10.1111/hepr.13346https://dx.doi.org/10.1111/hepr.13346.
Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 2017; 67(4):829-46. doi: 10.1016/j.jhep.2017.05.016https://dx.doi.org/10.1016/j.jhep.2017.05.016.
Friedman ES, Li Y, Shen TD, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 2018; 155(6):1741-52. e5. doi: 10.1053/j.gastro.2018.08.022https://dx.doi.org/10.1053/j.gastro.2018.08.022.
Hirschfield GM, Mason A, Luketic V, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015; 148(4):751-61. e8. doi: 10.1053/j.gastro.2014.12.005https://dx.doi.org/10.1053/j.gastro.2014.12.005.
Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375(7):631-43. doi: 10.1056/NEJMoa1509840https://dx.doi.org/10.1056/NEJMoa1509840. http://www.nejm.org/doi/10.1056/NEJMoa1509840http://www.nejm.org/doi/10.1056/NEJMoa1509840
Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 2019; 19(5):305-23. doi: 10.1038/s41577-019-0144-5https://dx.doi.org/10.1038/s41577-019-0144-5.
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385(9972):956-65. doi: 10.1016/S0140-6736(14)61933-4https://dx.doi.org/10.1016/S0140-6736(14)61933-4.
Zheng X, Huang F, Zhao A, et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol 2017; 15(1): 120. doi: 10.1186/s12915-017-0462-7https://dx.doi.org/10.1186/s12915-017-0462-7.
Rizzo G, Passeri D, De Franco F, et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 2010; 78(4):617-30. doi: 10.1124/mol.110.064501https://dx.doi.org/10.1124/mol.110.064501.
Kumar DP, Asgharpour A, Mirshahi F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis. J Biol Chem 2016; 291(13):6626-40. doi: 10.1074/jbc.M115.699504https://dx.doi.org/10.1074/jbc.M115.699504.
Roth JD, Feigh M, Veidal SS, et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24(2):195-210. doi: 10.3748/wjg.v24.i2.195https://dx.doi.org/10.3748/wjg.v24.i2.195. http://www.wjgnet.com/1007-9327/full/v24/i2/195.htmhttp://www.wjgnet.com/1007-9327/full/v24/i2/195.htm
Deng M, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol 2020; 245(3):425-37. doi: 10.1530/JOE-20-0018https://dx.doi.org/10.1530/JOE-20-0018.
Liang Y, Lin C, Zhang Y, et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology 2018; 26(4):1051-5. doi: 10.1007/s10787-018-0479-8https://dx.doi.org/10.1007/s10787-018-0479-8.
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9):2325-40. doi: 10.1194/jlr.R036012https://dx.doi.org/10.1194/jlr.R036012.
Famouri F, Shariat Z, Hashemipour M, et al. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr 2017; 64(3):413-7. doi: 10.1097/MPG.0000000000001422https://dx.doi.org/10.1097/MPG.0000000000001422. https://onlinelibrary.wiley.com/doi/10.1097/MPG.0000000000001422https://onlinelibrary.wiley.com/doi/10.1097/MPG.0000000000001422
Kobyliak N, Abenavoli L, Falalyeyeva T, et al. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clini-cal study. Minerva Med 2018; 109(6):418-28. doi: 10.23736/S0026-4806.18.05845-7https://dx.doi.org/10.23736/S0026-4806.18.05845-7.
Vajro P, Mandato C, Veropalumbo C, et al. Probiotics: a possible role in treatment of adult and pediatric non alcoholic fatty liver disease. Ann Hepatol 2013; 12(1):161-3.
Vajro P, Veropalumbo C, D’Aniello R, et al. Probiotics in the treatment of non alcoholic fatty liver disease: further evidence in obese children. Nutr Metab Cardiovasc Dis 2013; 23(1):e9-10. doi: 10.1016/j.numecd.2012.10.006https://dx.doi.org/10.1016/j.numecd.2012.10.006. https://linkinghub.elsevier.com/retrieve/pii/S0939475312002426https://linkinghub.elsevier.com/retrieve/pii/S0939475312002426
Tauxe WM, Haydek JP, Rebolledo PA, et al. Fecal microbiota transplant for Clostridium difficile infection in older adults. Therap Adv Gastroenterol 2016; 9(3):273-81. doi: 10.1177/1756283X15622600https://dx.doi.org/10.1177/1756283X15622600.
Gokcen P, Ozturk O, Adali G, et al. A novel therapeutic approach to NASH: both polyethylene glycol 3350 and lactulose reduce hepatic inflammation in C57BL/6J mice. Adv Clin Exp Med 2021; 30(11):1167-74. doi: 10.17219/acem/140506https://dx.doi.org/10.17219/acem/140506.
Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017; 7(1): 1529. doi: 10.1038/s41598-017-01751-yhttps://dx.doi.org/10.1038/s41598-017-01751-y.
Kang SH, Lee YB, Lee JH, et al. Rifaximin treatment is associated with reduced risk of cirrhotic complications and prolonged overall survival in patients experiencing hepatic encephalopathy. Aliment Pharmacol Ther 2017; 46(9):845-55. doi: 10.1111/apt.14275https://dx.doi.org/10.1111/apt.14275. https://onlinelibrary.wiley.com/toc/13652036/46/9https://onlinelibrary.wiley.com/toc/13652036/46/9
Moratalla A, Ampuero J, Bellot P, et al. Lactulose reduces bacterial DNA translocation, which worsens neurocognitive shape in cirrhotic patients with minimal hepatic encephalopathy. Liver Int 2017; 37(2):212-23. doi: 10.1111/liv.13200https://dx.doi.org/10.1111/liv.13200.
Bajaj JS, Gillevet PM, Patel NR, et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis 2012; 27(2):205-15. doi: 10.1007/s11011-012-9303-0https://dx.doi.org/10.1007/s11011-012-9303-0.
Abenavoli L, Milic N, Peta V, et al. Alimentary regimen in non-alcoholic fatty liver disease: mediterranean diet. World J Gastroenterol 2014; 20(45):16831-40. doi: 10.3748/wjg.v20.i45.16831https://dx.doi.org/10.3748/wjg.v20.i45.16831. http://www.wjgnet.com/1007-9327/full/v20/i45/16831.htmhttp://www.wjgnet.com/1007-9327/full/v20/i45/16831.htm
Ji Y, Gao Y, Chen H, et al. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients 2019; 11(9):2062. doi: 10.3390/nu11092062https://dx.doi.org/10.3390/nu11092062.
Reiberger T, Ferlitsch A, Payer BA, et al. Non-selective betablocker thera-py decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol 2013; 58(5):911-21. doi: 10.1016/j.jhep.2012.12.011https://dx.doi.org/10.1016/j.jhep.2012.12.011.
关联资源
相关文章
相关作者
相关机构