FOLLOWUS
1. 1The Sixth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100048, China
2. 2PLA Air Force Medical Center, Beijing 100142, China
3. 3Rocket Army General Hospital, Chinese PLA General Hospital, Beijing 100088, China
4. 4The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
* 张勇,zhy-545@163.com;
刘鹏,717344426@qq.com。
收稿日期:2023-06-13,
录用日期:2023-12-27,
网络出版日期:2024-03-01,
纸质出版日期:2024-03-31
Scan QR Code
吴瑛, 王大伟, 李军, 等. 二氢杨梅素对运动性骨骼肌损伤的保护作用及机制研究[J]. 中国医学科学杂志(英文), 2024,39(1):46-53.
Ying Wu, Da-Wei Wang, Jun Li, et al. Protective Effect of Dihydromyricetin Against Exercise-Induced Muscle Damage and Its Mechanism[J]. Chinese medical sciences journal, 2024, 39(1): 46-53.
吴瑛, 王大伟, 李军, 等. 二氢杨梅素对运动性骨骼肌损伤的保护作用及机制研究[J]. 中国医学科学杂志(英文), 2024,39(1):46-53. DOI: 10.24920/004272.
Ying Wu, Da-Wei Wang, Jun Li, et al. Protective Effect of Dihydromyricetin Against Exercise-Induced Muscle Damage and Its Mechanism[J]. Chinese medical sciences journal, 2024, 39(1): 46-53. DOI: 10.24920/004272.
目的
探讨二氢杨梅素(dihydromyricetin,DHM)对运动训练后小鼠骨骼肌损伤的保护作用及潜在机制。
方法
将成年雄性C57BL/6J小鼠随机分为安静对照组(CG)、运动组(EG)、二氢杨梅素(100mg/kg•d)+运动组(DHM组)。干预期4周,同时进行运动训练,每天1小时。训练结束后的次日,EG组和DHM组进行一次坡度为0、速度为18 m/min、持续90 min的跑台运动。运动结束后24小时按组别取材,测定血清肌酸激酶(creatine kinase,CK)、乳酸脱氢酶(lactate dehydrogenase,LDH)和总超氧化物歧化酶(total
superoxide dismutase,T-SOD)活性、丙二醛(malondialdehyde,MDA)含量和骨骼肌线粒体酶复合体 Ⅰ 和 Ⅱ 的活性,观察骨骼肌病理学组织形态变化。免疫印迹法(Western blot)检测线粒体功能相关通路的蛋白表达。
结果
与EG组相比,DHM组小鼠骨骼肌形态改变和线粒体损伤明显减轻。DHM显著抑制了运动后骨骼肌损伤的标志物CK和LDH及脂质过氧化水平,提高了骨骼肌T-SOD活性。Western blot结果显示,DHM显著增加小鼠骨骼肌沉默调节蛋白3(SIRT3)、雌激素相关受体α(EERα)和过氧化物酶体增殖物激活受体-γ共激活因子-1α(peroxisome proliferator-activated receptor gamma coactivator-1 alpha,PGC-1α)的表达。
结论
DHM有助于减轻小鼠运动性骨骼肌损伤,其机制可能是DHM可激活肌肉SIRT3信号通路,促进大强度运动后骨骼肌线粒体结构和功能的恢复。
Objective
To investigate the protective effect of dihydromyricetin (DHM) against exercise-induced muscle damage (EIMD) in mice and its potential mechanism.
Methods
Adult male C57BL/6J mice were randomly divided into control group (CG)
exercise group (EG)
and exercise + 100 mg/kg weight ·d DHM (DHM) group. The intervention lasted for four weeks
during which the animals in the EG and DHM groups were subjected to exercise training for 1 h per day. The day after the training
a 90-min treadmill exercise (slope: 0 and speed: 18 m/min) was conducted in both EG and DHM groups. Samples of blood and gastrocnemius muscles were harvested from the three groups 24 h after the exercise
followed by the measurement of serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities
total superoxide dismutase (T-SOD) activity
malondialdehyde (MDA)
and skeletal muscle mitochondrial enzyme complex I and II activities. Histological changes in the skeletal muscle were observed by transmission electron microscopy
and the protein expressions of mitochondrial function-related pathways were detected by Western blotting.
Results
Skeletal muscle morphological changes and mitochondrial damage were alleviated in the DHM group compared to those in the EG. The activities of EIMD markers CK and LDH and the level of lipid peroxidation were notably repressed and the serum T-SOD activity
was enhanced after DHM intervention. Western blotting demonstrated that the expressions of sirtuin type 3 (SIRT3)
estrogen-related receptor alpha
and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha in the skeletal muscle of mice increased after the DHM intervention.
Conclusion
DHM can relieve EIMD in mice
possibly by promoting the recovery of the mitochondrial structure and function in the skeletal muscle of mice after high-intensity exercise
via
the activation of the SIRT3 signaling pathway.
Owens DJ , Twist C , Cobley J N , et al. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 2019 ; 19 ( 1 ): 71 - 85 . doi: 10.1080/17461391.2018.1505957 https://dx.doi.org/10.1080/17461391.2018.1505957 .
Shang HY , Bai SC , Xia Z , et al. Effect of exercise-induced skeletal muscle damage on mitochondrial structure and function in skeletal muscle of rats . J Beijing Sport Univ 2018 ; 41 ( 1 ): 58 - 63 . doi: 10.19582/j.cnki.11-3785/g8.2018.01.008 https://dx.doi.org/10.19582/j.cnki.11-3785/g8.2018.01.008 .
Zheng LF , Zhou YZ , Chen PJ , et al. Molecular mechanisms of mitochondrial adaptation to exercise in skeletal muscle . Chin J Sport Med 2018 ; 37 ( 4 ): 347 - 52 . doi: 10.1096/fj.15-276337 https://dx.doi.org/10.1096/fj.15-276337 .
Wang JY . Effects of oyster polypeptide on mitochondrial function of skeletal muscle in exercise-induced fatigue rats . J Anhui Univ Chin Med (Natur Sci) 2020 ; 44 ( 5 ): 93 - 9 . doi: 10.1152/japplphysiol.00719.2021 https://dx.doi.org/10.1152/japplphysiol.00719.2021 .
Shang HY , Bai SC , Xia Z , et al. Effects of acupuncture on mitochondrial structure and function of skeletal muscle in rats with heavy load exercise . Chin J Rehabil Med 2018 ; 33 ( 8 ): 901 - 9 . doi: 10.3969/j.issn.1001-1242.2018.08.005 https://dx.doi.org/10.3969/j.issn.1001-1242.2018.08.005 .
Wang YX , Hong ZS , Yang K , et al. Research progress of dihydromyricetin in Ampelopsis grossedentata . J Shenyang Pharm Univ 2020 ; 37 ( 6 ): 569 - 76 . doi: 10.14066/j.cnki.cn21-1349/r.2020.06.014 https://dx.doi.org/10.14066/j.cnki.cn21-1349/r.2020.06.014 .
Zou D , Chen K , Liu P , et al. Dihydromyricetin improves physical performance under simulated high altitude . Med Sci Sports Exerc 2014 ; 46 ( 11 ): 2077 - 84 . doi: 10.1249/mss.0000000000000336 https://dx.doi.org/10.1249/mss.0000000000000336 . https://journals.lww.com/00005768-201411000-00006 https://journals.lww.com/00005768-201411000-00006
Song WH , Tang CF , Liang XW , et al. Research on related indexes of exercise-induced skeletal muscle damage . J Capital Univ Phys Educ Sport 2011 ; 23 ( 2 ): 184 - 7 . doi: 10.14036/j.cnki.cn11-4513.2011.02.002 https://dx.doi.org/10.14036/j.cnki.cn11-4513.2011.02.002 .
Warren GL , Hayes DA , Lowe DA , et al. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle . J Physiol 1993 ; 464 : 457 - 75 . doi: 10.1113/jphysiol.1993.sp019645 https://dx.doi.org/10.1113/jphysiol.1993.sp019645 . https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.1993.sp019645 https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.1993.sp019645
Powers SK , Deminice R , Ozdemir M , et al. Exercise-induced oxidative stress: friend or foe? J Sport Health Sci 2020 ; 9 ( 5 ): 415 - 25 . doi: 10.1016/j.jshs.2020.04.001 https://dx.doi.org/10.1016/j.jshs.2020.04.001 .
Niu YL , Cao JM , Wang Z , et al. Effects of astaxanthin on oxidative stress injury and apoptosis of skeletal muscle induced by high-intensity exercise in rats . Acta Nutrimenta Sinica 2021 ; 43 ( 3 ): 274 - 8 . doi: 10.13325/j.cnki.acta.nutr.sin.2021.03.010 https://dx.doi.org/10.13325/j.cnki.acta.nutr.sin.2021.03.010 .
Li N , Cao X . Ampelopsin alleviated oxygen-glucose deprivation/reoxygenation-induced oxidative stress in neurons . J Apoplexy Nerv Dis 2020 ; 37 ( 10 ): 868 - 71 . doi: 10.19845/j.cnki.zfysjjbzz.2020.0473 https://dx.doi.org/10.19845/j.cnki.zfysjjbzz.2020.0473 .
Ye L , Wang H , Duncan SE , et al. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef . Food Chem 2015 ; 172 : 416 - 22 . doi: 10.1016/j.foodchem.2014.09.090 https://dx.doi.org/10.1016/j.foodchem.2014.09.090 .
Xu JJ , Yao MJ , Xu G . Study on antioxidant activities of dihydromyricetin . Food Sci 2007 ; 28 ( 9 ): 43 - 5 . doi: 10.3321/j.issn:1002-6630.2007.09.003 https://dx.doi.org/10.3321/j.issn:1002-6630.2007.09.003 .
Kim H K , Nilius B , Kim N , et al. Cardiac response to oxidative stress induced by mitochondrial dysfunction . Rev Physiol Biochem Pharmacol 2016 ; 170 : 101 - 27 . doi: 10.1007/112_2015_5004 https://dx.doi.org/10.1007/112_2015_5004 .
Zhao R Z , Jiang S , Zhang L , et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) . Int J Mol Med 2019 ; 44 ( 1 ): 3 - 15 . doi: 10.3892/ijmm.2019.4188 https://dx.doi.org/10.3892/ijmm.2019.4188 .
Wang T , Cao Y , Zheng Q , et al. SENP1-Sirt 3 signaling controls mitochondrial protein acetylation and metabolism . Mol Cell 2019 ; 75(4): 823-34. doi: 10.1016/j.molcel.2019.06.008 https://dx.doi.org/10.1016/j.molcel.2019.06.008 .
Shen Y , Wu Q , Shi J , et al. Regulation of SIRT 3 on mitochondrial functions and oxidative stress in Parkinson’s disease . Biomed Pharmacother 2020 ; 132 : 110928 . doi: 10.1016/j.biopha.2020.110928 https://dx.doi.org/10.1016/j.biopha.2020.110928 . https://linkinghub.elsevier.com/retrieve/pii/S0753332220311203 https://linkinghub.elsevier.com/retrieve/pii/S0753332220311203
Wang SH , Zhang JL , Deng XL , et al. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function . Biochimie 2020 ; 179 : 1 - 13 . doi: 10.1016/j.biochi.2020.08.021 https://dx.doi.org/10.1016/j.biochi.2020.08.021 .
Tseng AH , Shieh SS , Wang DL . SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage . Free Radic Biol Med 2013 ; 63: 222-34. doi: 10.1016/j.freeradbiomed.2013.05.002 https://dx.doi.org/10.1016/j.freeradbiomed.2013.05.002 .
Li Y , Lu J , Cao X , et al. A newly synthesized rhamnoside derivative alleviates Alzheimer’s amyloid-beta-induced oxidative stress, mitochondrial dysfunction, and cell senescence through upregulating SIRT3 . Oxid Med Cell Longev 2020 ; 2020 : 7698560 . doi: 10.1155/2020/7698560 https://dx.doi.org/10.1155/2020/7698560 .
关联资源
相关文章
相关作者
相关机构