FOLLOWUS
1. 1Department of Stomatology, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
2. 2Chinese PLA Medical School, Beijing 100853, China
3. 3State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
4. 4Baodi Clinical College, Tianjin Medical University, Tianjin 301800, China
陈欢, 1773524536@qq.com
* 张彤,kqzhengji301@163.com;
收稿日期:2023-10-20,
录用日期:2023-12-27,
网络出版日期:2024-02-22,
纸质出版日期:2024-03-31
Scan QR Code
孟祥博, 陈美桦, 许诺, 等. 细胞外基质蛋白
Xiang-Bo Meng, Mei-Hua Chen, Nuo Xu, et al. Antiviral Effect of Extracellular Matrix Protein ABI3BP on Vesicular Stomatitis Virus and Its Mechanism: A Preliminary Study
孟祥博, 陈美桦, 许诺, 等. 细胞外基质蛋白
Xiang-Bo Meng, Mei-Hua Chen, Nuo Xu, et al. Antiviral Effect of Extracellular Matrix Protein ABI3BP on Vesicular Stomatitis Virus and Its Mechanism: A Preliminary Study
目的
探讨细胞外基质蛋白
ABI3BP
对水疱性口炎病毒(vesicular stomatitis virus,VSV)基因组复制和先天免疫信号通路的影响。
方法
在人皮肤成纤维细胞BJ-5ta中转染小干扰RNA(siRNA)敲低
ABI3BP
基因,建立
ABI3BP
基因缺失的VSV-GFP病毒感染细
胞模型。通过鬼笔环肽细胞免疫荧光实验,检测敲低
ABI3BP
后细胞内肌动蛋白(F-actin)形态结构的变化。在
ABI3BP
基因缺失的VSV-GFP病毒感染细胞模型上,利用RT-qPCR方法检测细胞中病毒mRNA水平的变化。利用免疫印迹法(Western blotting)检测IRF3和TBK1磷酸化水平的变化。
结果
成功建立敲减
ABI3BP
基因的VSV-GFP感染的细胞模型。鬼笔环肽细胞免疫荧光染色表明,敲减
ABI3BP
基因后,细胞内F-actin的表达发生结构重排。采用不同剂量的病毒感染细胞,与对照组相比,
ABI3BP
敲低细胞中基因拷贝数分别增加2.5~3.5倍(
P
<
0.01)和2.2~4倍(
P
<
0.01),VSV-GFP病毒蛋白表达水平显著上调;在
ABI3BP
基因敲低的细胞模型上,VSV-GFP病毒感染导致Ⅰ型干扰素免疫通路关键免疫分子p-IRF3 和p-TBK1蛋白磷酸化水平明显下调。
结论
本研究表明细胞外基质蛋白
ABI3BP
对维持细胞内F-actin纤维网状结构具有重要作用。
ABI3BP
缺失促进RNA病毒的复制,
ABI3BP
是I型干扰素通路激活的重要调控分子。
Objective
To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.
Methods
The small interfering RNA (siRNA) was transfected to knock down
ABI3BP
gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on
ABI3BP
knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.
Results
The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of
ABI3BP
in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after
ABI3BP
gene knockdown. Compared with the con
trol group
the gene copy number of VSV-GFP in
ABI3BP
knockdown cells increased by 2.2 - 3.5 times (
P
<
0.01) and 2.2 - 4.0 times (
P
<
0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in
ABI3BP
knockdown cells after virus infection. The activation of type-I interferon pathway
as determined by phosphorylated IRF3 and phosphorylated TBK1
was significantly decreased in
ABI3BP
knockdown cells after VSV-GFP infection.
Conclusions
Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure.
ABI3BP
gene deletion promotes RNA virus replication
and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.
Walton TE , Webb PA , Kramer WL , et al. Epizootic vesicular stomatitis in Colorado, 1982: epidemiologic and entomologic studies . Am J Trop Med Hyg 1987 ; 36 ( 1 ): 166 - 76 . doi: 10.4269/ajtmh.1987.36.166 https://dx.doi.org/10.4269/ajtmh.1987.36.166 . https://ajtmh.org/doi/10.4269/ajtmh.1987.36.166 https://ajtmh.org/doi/10.4269/ajtmh.1987.36.166
Walker PJ , Firth C , Widen SG , et al. Evolution of genome size and complexity in the rhabdoviridae . PLoS Pathog 2015 ; 11 ( 2 ): e1004664 . doi: 10.1371/journal.ppat.1004664 https://dx.doi.org/10.1371/journal.ppat.1004664 .
Liu G , Cao W , Salawudeen A , et al. Vesicular stomatitis virus: from agricultural pathogen to vaccine vector . Pathogens 2021 ; 10 ( 9 ): 1902. doi: 10.3390/pathogens10091092 https://dx.doi.org/10.3390/pathogens10091092 .
Clarke DK , Nasar F , Lee M , et al. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations . J Virol 2007 ; 81 ( 4 ): 2056 - 64 . doi: 10.1128/jvi.01911-06 https://dx.doi.org/10.1128/jvi.01911-06 .
Novella IS . Contributions of vesicular stomatitis virus to the understanding of RNA virus evolution . Curr Opin Microbiol 2003 ; 6 ( 4 ): 399 - 405 . doi: 10.1016/s1369-5274(03)00084-5 https://dx.doi.org/10.1016/s1369-5274(03)00084-5 .
Hastie E , Cataldi M , Marriott I , et al. Understanding and altering cell tropism of vesicular stomatitis virus . Virus Res 2013 ; 176 ( 1-2 ): 16 - 32 . doi: 10.1016/j.virusres.2013.06.003 https://dx.doi.org/10.1016/j.virusres.2013.06.003 .
Fletcher P , O’Donnell KL , Doratt BM , et al. Single-dose VSV-based vaccine protects cynomolgus macaques from disease after Taï Forest virus infection . Emerg Microbes Infect 2023 ; 12 ( 2 ): 2239950 . doi: 10.1080/22221751.2023.2239950 https://dx.doi.org/10.1080/22221751.2023.2239950 .
Marek J , Hanesch L , Krabbe T , et al. Oncolytic virotherapy with chimeric VSV-NDV synergistically supports RIG-I-dependent checkpoint inhibitor immunotherapy . Mol Ther Oncolytics 2023 ; 30 : 117 - 31 . doi: 10.1016/j.omto.2023.08.001 https://dx.doi.org/10.1016/j.omto.2023.08.001 . https://linkinghub.elsevier.com/retrieve/pii/S2372770523000554 https://linkinghub.elsevier.com/retrieve/pii/S2372770523000554
Matsuda S , Iriyama C , Yokozaki S , et al. Cloning and sequencing of a novel human gene that encodes a putative target protein of Nesh-SH3 . J Hum Genet 2001 ; 46 ( 8 ): 483 - 6 . doi: 10.1007/s100380170049 https://dx.doi.org/10.1007/s100380170049 .
Delfín DA , DeAguero JL , McKown EN . The extracellular matrix protein ABI3BP in cardiovascular health and disease . Front Cardiovasc Med 2019 ; 6: 23. doi: 10.3389/fcvm.2019.00023 https://dx.doi.org/10.3389/fcvm.2019.00023 .
Feng Y , Han X , Zhang Z , et al. ABI3BP is a prognosis biomarker related with clinicopathological features and immunity infiltration of lung tumor . Front Genet 2022 ; 13 : 1085785 . doi: 10.3389/fgene.2022.1085785 https://dx.doi.org/10.3389/fgene.2022.1085785 . https://www.frontiersin.org/articles/10.3389/fgene.2022.1085785/full https://www.frontiersin.org/articles/10.3389/fgene.2022.1085785/full
Latini FR , Hemerly JP , Oler G , et al. Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion . Endocr Relat Cancer 2008 ; 15 ( 3 ): 787 - 99 . doi: 10.1677/erc-08-0079 https://dx.doi.org/10.1677/erc-08-0079 . https://erc.bioscientifica.com/doi/10.1677/ERC-08-0079 https://erc.bioscientifica.com/doi/10.1677/ERC-08-0079
Li P , Yuan H , Kuang X , et al. Network module function enrichment analysis of lung squamous cell carcinoma and lung adenocarcinoma . Medicine 2022 ; 101 ( 47 ): e31798 . doi: 10.1097/md.0000000000031798 https://dx.doi.org/10.1097/md.0000000000031798 .
Cai H , Li Y , Qin D , et al. The depletion of ABI3BP by microRNA-183 promotes the development of esophageal carcinoma . Mediat Inflamm 2020 ; 2020: 3420946. doi: 10.1155/2020/3420946 https://dx.doi.org/10.1155/2020/3420946 .
Feng Y , Tao F , Qiao H , et al. A pan-cancer analysis of ABI3BP: a potential biomarker for prognosis and immunoinfiltration . Front Oncol 2023 ; 13 : 1159725 . doi: 10.3389/fonc.2023.1159725 https://dx.doi.org/10.3389/fonc.2023.1159725 . https://www.frontiersin.org/articles/10.3389/fonc.2023.1159725/full https://www.frontiersin.org/articles/10.3389/fonc.2023.1159725/full
Hodgkinson CP , Naidoo V , Patti KG , et al. ABI3BP is a multifunctional autocrine/paracrine factor that regulates mesenchymal stem cell biology . Stem Cells 2013 ; 31 ( 8 ): 1669 - 82 . doi: 10.1002/stem.1416 https://dx.doi.org/10.1002/stem.1416 .
Song N , Qi Q , Cao R , et al. MAVS O-GlcNAcylation is essential for host antiviral immunity against lethal RNA viruses . Cell Rep 2019 ; 28 ( 9 ): 2386 - 96 . doi: 10.1016/j.celrep.2019.07.085 https://dx.doi.org/10.1016/j.celrep.2019.07.085 .
Latini FR , Hemerly JP , Freitas BC , et al. ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence . BMC Cancer 2011 ; 11 : 11 . doi: 10.1186/1471-2407-11-11 https://dx.doi.org/10.1186/1471-2407-11-11 .
Dai Z , Pendergast AM . Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity . Genes Dev 1995 ; 9(21): 2569-82. doi: 10.1101/gad.9.21.2569 https://dx.doi.org/10.1101/gad.9.21.2569 .
Bae J , Sung BH , Cho IH , et al. NESH regulates dendritic spine morphology and synapse formation . PLOS ONE 2012 ; 7 ( 4 ): e34677 . doi: 10.1371/journal.pone.0034677 https://dx.doi.org/10.1371/journal.pone.0034677 .
Miyazaki K , Matsuda S , Ichigotani Y , et al. Isolation and characterization of a novel human gene (NESH) which encodes a putative signaling molecule similar to e3B1 protein . Biochimica et Biophysica Acta (BBA) 2000 ; 1493 ( 1-2 ): 237 - 41 . doi: 10.1016/s0167-4781(00)00158-5 https://dx.doi.org/10.1016/s0167-4781(00)00158-5 .
Hodgkinson CP , Gomez JA , Payne AJ , et al. ABI3BP regulates cardiac progenitor cell proliferation and differentiation . Circ Res 2014 ; 115 ( 12 ): 1007 - 16 . doi: 10.1161/circresaha.115.304216 https://dx.doi.org/10.1161/circresaha.115.304216 .
Manabe R , Tsutsui K , Yamada T , et al. Transcriptome-based systematic identification of extracellular matrix proteins . Proc Natl Acad Sci USA 2008 ; 105 ( 35 ): 12849 - 54 . doi: 10.1073/pnas.0803640105 https://dx.doi.org/10.1073/pnas.0803640105 . https://pnas.org/doi/full/10.1073/pnas.0803640105 https://pnas.org/doi/full/10.1073/pnas.0803640105
Roberts KL , Baines JD . Actin in herpesvirus infection . Viruses 2011 ; 3 ( 4 ): 336 - 46 . doi: 10.3390/v3040336 https://dx.doi.org/10.3390/v3040336 .
Nelemans T , Kikkert M . Viral innate immune evasion and the pathogenesis of emerging RNA virus infections . Viruses 2019 ; 11 ( 10 ): 961 . doi: 10.3390/v11100961 https://dx.doi.org/10.3390/v11100961 .
Stefan KL , Kim MV , Iwasaki A , et al. Commensal microbiota modulation of natural resistance to virus infection . Cell 2020 ; 183 ( 5 ): 1312 - 24 . doi: 0.1016/j.cell.2020.10.047 https://dx.doi.org/0.1016/j.cell.2020.10.047 .
Roers A , Hiller B , Hornung V . Recognition of endogenous nucleic acids by the innate immune system . Immunity 2016 ; 44 ( 4 ): 739 - 54 . doi: 10.1016/j.immuni.2016.04.002 https://dx.doi.org/10.1016/j.immuni.2016.04.002 .
Seth RB , Sun L , Ea CK , et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 . Cell 2005 ; 122 ( 5 ): 669 - 82 . doi: 10.1016/j.cell.2005.08.012 https://dx.doi.org/10.1016/j.cell.2005.08.012 .
Binder M , Eberle F , Seitz S , et al. Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I) . J Biol Chem 2011 ; 286 ( 31 ): 27278 - 87 . doi: 10.1074/jbc.m111.256974 https://dx.doi.org/10.1074/jbc.m111.256974 .
Ren Z , Ding T , Zuo Z , et al. Regulation of MAVS expression and signaling function in the antiviral innate immune response . Front Immunol 2020 ; 11 : 1030 . doi: 10.3389/fimmu.2020.01030 https://dx.doi.org/10.3389/fimmu.2020.01030 .
Zheng Z , Zhao M , Shan H , et al. Noncanonical autophagy is a new strategy to inhibit HSV-1 through STING1 activation . Autophagy 2023 ; 19(12): 3096-112. doi: 10.1080/15548627.2023.2237794 https://dx.doi.org/10.1080/15548627.2023.2237794 .
Chakravarty S , Subramanian G , Popli S , et al. Interferon-stimulated gene TDRD 7 interacts with AMPK and inhibits its activation to suppress viral replication and pathogenesis . mBio 2023 ; 14 ( 5 ): e0061123 . doi: 10.1128/mbio.00611-23 https://dx.doi.org/10.1128/mbio.00611-23 . https://journals.asm.org/doi/10.1128/mbio.00611-23 https://journals.asm.org/doi/10.1128/mbio.00611-23
关联资源
相关文章
相关作者
相关机构