FOLLOWUS
1. 1Department of Nutrition and Food Hygiene, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
2. 2Department of Clinical Nutrition, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong 264000, China
3. 3Department of Epidemiology and Medical Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
* E-mail: zhangrqxianyang@163.com
收稿日期:2021-09-06,
录用日期:2022-4-8,
网络出版日期:2022-05-30,
纸质出版日期:2022-06-30
Scan QR Code
任晓梅, 张立, 辛宝, 等. 硒蛋白脱碘酶的生物学功能及其在骨性关节炎患者中的表达[J]. 中国医学科学杂志(英文版), 2022,37(2):142-150.
Xiaomei Ren, Li Zhang, Bao Xin, et al. Biological Functions of Selenoprotein Iodothyronine Deiodinase and its Expression in Osteoarthritis[J]. Chinese medical sciences journal, 2022, 37(2): 142-150.
任晓梅, 张立, 辛宝, 等. 硒蛋白脱碘酶的生物学功能及其在骨性关节炎患者中的表达[J]. 中国医学科学杂志(英文版), 2022,37(2):142-150. DOI: 10.24920/003991.
Xiaomei Ren, Li Zhang, Bao Xin, et al. Biological Functions of Selenoprotein Iodothyronine Deiodinase and its Expression in Osteoarthritis[J]. Chinese medical sciences journal, 2022, 37(2): 142-150. DOI: 10.24920/003991.
目的
骨关节炎(osteoarthritis
OA)是一种常见的关节疾病
老年人尤其高发。碘甲状腺原氨酸脱碘酶(iodothyronine deiodinases
DIOs)作为一种重要的硒蛋白
在骨和关节疾病中发挥着关键作用。本研究旨在利用生物信息学方法探讨DIOs在OA发病机制中的作用。
方法
通过对NCBI的GEO数据库中与OA相关的芯片数据进行数据挖掘
利用GenCLip 3.0
DAVID
STRING
Cytoscape和Network Analyst等工具分析DIOs的生物学功能
并用Review Manager5.3对数据进行Meta分析
研究DIOs在正常人和骨性关节炎患者中的表达。
结果
聚类分析显示:DIOs的功能与甲状腺激素受体和碘甲状腺原氨酸有关。GO分析显示:DIOs主要参与乙醇代谢和含酚化合物代谢等生物过程
还与外源生物的细胞色素P450代谢和甲状腺激素信号传导有关。SULT1A1是PPI网络的核心节点。miRNAs和甲状腺激素与DIO1和DIO2存在交互作用。Meta分析显示:DIO3的表达在OA患者中显著上调(
P
<
0.05)。
结论
DIOs的主要生物学功能与甲状腺激素的调节密切相关
而DIO3的上调表达可能在OA的发生中发挥关键作用。
Objective
Iodothyronine deiodinases (DIOs) are important selenoproteins that play a key role in the bone and joint diseases. Osteoarthritis (OA) is the most prevalent joint disease especially in elders. This bioinformatic analysis was performed to explore the role of DIOs in OA pathogenesis.
Methods
The biological functions of selenoprotein DIOs were analyzed by bioinformatic techniques
including GenCLip 3.0
Database for Annotation
Visualization and Integrated Discovery (DAVID)
STRING
Cytoscape
and Network Analyst. The expression of DIOs in the healthy individuals and OA patients was determined by mining OA-related microarray data in the gene expression omnibus (GEO) database of National Center for Biotechnology Information and performing a Meta-analysis of the data with Review Manager 5.3.
Results
Cluster analysis revealed that the function of the DIOs was associated with thyroid hormone receptor and iodothyronine; GO analysis showed that DIOs were mainly involved in biological processes
such as ethanol metabolism and phenol-containing compound metabolism and primarily involved in the cytochrome P450 metabolism of exogenous organisms and thyroid hormone signaling; SULT1A1 was the core node of the PPI network; miRNAs and thyroid hormones had some iterations with
DIO1
and
DIO2
; Meta-analysis showed that
DIO3
expression was significantly up-regulated in OA patients (
SMD
= 0.31
95%
CI
: 0.03
0.59
P
= 0.03).
Conclusions
The main biological functions of DIOs were closely associated with the regulation of thyroid hormone. And the up-regulated expression of
DIO3
may have crucial impact on the occurrence of OA.
Ogden C , Carroll M , Lawman H , et al . Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014 . JAMA 2016; 315(21): 2292 - 9 . doi: 10.1001/jama.2016.6361 https://dx.doi.org/10.1001/jama.2016.6361 . DOI: 10.1001/jama.2016.6361 http://doi.org/10.1001/jama.2016.6361
Mac J , Kan H , Chiu K , et al . Antiobesity medication use among overweight and obese adults in the United States: 2015-2018 . Endocr Pract 2021 ; 27 ( 11 ): 1139 - 48 . doi: 10.1016/j.eprac.2021.07.004 https://dx.doi.org/10.1016/j.eprac.2021.07.004 . DOI: 10.1016/j.eprac.2021.07.004 http://doi.org/10.1016/j.eprac.2021.07.004 https://linkinghub.elsevier.com/retrieve/pii/S1530891X21011228 https://linkinghub.elsevier.com/retrieve/pii/S1530891X21011228
Berenbaum F , Walker C . Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns . Postgrad Med 2020 ; 132 ( 4 ): 377 - 84 . doi: 10.1080/00325481.2020.1730669 https://dx.doi.org/10.1080/00325481.2020.1730669 . DOI: 10.1080/00325481.2020.1730669 http://doi.org/10.1080/00325481.2020.1730669
Safiri S , Kolahi A , Smith E , et al . Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017 . Ann Rheum Dis 2020; 79(6): 819 - 28 . doi: 10.1136/annrheumdis-2019-216515 https://dx.doi.org/10.1136/annrheumdis-2019-216515 . DOI: 10.1136/annrheumdis-2019-216515 http://doi.org/10.1136/annrheumdis-2019-216515
Xiao S , Chen L . The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis . J Control Release 2020 ; 328 : 817 - 33 . doi: 10.1016/j.jconrel.2020.11.007 https://dx.doi.org/10.1016/j.jconrel.2020.11.007 . DOI: 10.1016/j.jconrel.2020.11.007 http://doi.org/10.1016/j.jconrel.2020.11.007 https://linkinghub.elsevier.com/retrieve/pii/S0168365920306568 https://linkinghub.elsevier.com/retrieve/pii/S0168365920306568
Geyer M , Schönfeld C . Novel insights into the pathogenesis of osteoarthritis . Curr Rheumatol Rev 2018 ; 14 ( 2 ): 98 - 107 . doi: 10.2174/1573397113666170807122312 https://dx.doi.org/10.2174/1573397113666170807122312 . DOI: 10.2174/1573397113666170807122312 http://doi.org/10.2174/1573397113666170807122312
Labunskyy V , Hatfield D , Gladyshev V . Selenoproteins: molecular pathways and physiological roles . Physiol Rev 2014 ; 94 ( 3 ): 739 - 77 . doi: 10.1152/physrev.00039.2013 https://dx.doi.org/10.1152/physrev.00039.2013 . DOI: 10.1152/physrev.00039.2013 http://doi.org/10.1152/physrev.00039.2013 https://www.physiology.org/doi/10.1152/physrev.00039.2013 https://www.physiology.org/doi/10.1152/physrev.00039.2013
Bianco A , Kim B . Deiodinases: implications of the local control of thyroid hormone action . J Clin Invest 2006 ; 116 ( 10 ): 2571 - 9 . doi: 10.1172/JCI29812 https://dx.doi.org/10.1172/JCI29812 . DOI: 10.1172/JCI29812 http://doi.org/10.1172/JCI29812 http://www.jci.org/cgi/doi/10.1172/JCI29812 http://www.jci.org/cgi/doi/10.1172/JCI29812
Bomer N , Hollander W , Ramos Y , et al . Underlying molecular mechanisms of DIO 2 susceptibility in symptomatic osteoarthritis . Ann Rheum Dis 2015 ; 74 ( 8 ): 1571 - 9 . doi: 10.1136/annrheumdis-2013-204739 https://dx.doi.org/10.1136/annrheumdis-2013-204739 . DOI: 10.1136/annrheumdis-2013-204739 http://doi.org/10.1136/annrheumdis-2013-204739
Bianco A , Kim B . Pathophysiological relevance of deiodinase polymorphism . Curr Opin Endocrinol Diabetes Obes 2018 ; 25 ( 5 ): 341 - 6 . doi: 10.1097/MED.0000000000000428 https://dx.doi.org/10.1097/MED.0000000000000428 . DOI: 10.1097/MED.0000000000000428 http://doi.org/10.1097/MED.0000000000000428 http://journals.lww.com/01266029-201810000-00012 http://journals.lww.com/01266029-201810000-00012
Hernandez A , Stohn J . The type 3 deiodinase: epigenetic control of brain thyroid hormone action and neurological function . Int J Mol Sci 2018 ; 19 ( 6 ):1804. doi: 10.3390/ijms19061804 https://dx.doi.org/10.3390/ijms19061804 . DOI: 10.3390/ijms19061804 http://doi.org/10.3390/ijms19061804
Morimura T , Tsunekawa K , Kasahara T , et al . Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin . Endocrinology 2005 ; 146 ( 4 ): 2077 - 84 . doi: 10.1210/en.2004-1432 https://dx.doi.org/10.1210/en.2004-1432 . DOI: 10.1210/en.2004-1432 http://doi.org/10.1210/en.2004-1432
Sakane Y , Kanamoto N , Yamauchi I , et al . Regulation of type 1 iodothyronine deiodinase by LXRα . PLoS One 2017 ;12(6): e0179213 . doi: 10.1371/journal.pone.0179213 https://dx.doi.org/10.1371/journal.pone.0179213 . DOI: 10.1371/journal.pone.0179213 http://doi.org/10.1371/journal.pone.0179213
Jiao X , Sherman BT , Huang da W , et al . DAVID-WS: a stateful web service to facilitate gene/protein list analysis . Bioinformatics 2012 ; 28 ( 13 ): 1805 - 6 . doi: 10.1093/bioinformatics/bts251 https://dx.doi.org/10.1093/bioinformatics/bts251 . DOI: 10.1093/bioinformatics/bts251 http://doi.org/10.1093/bioinformatics/bts251 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts251 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bts251
Szklarczyk D , Gable A , Lyon D , et al . STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets . Nucleic Acids Res 2019 ; 47 ( D1 ): D607 - 13 . doi: 10.1093/nar/gky1131 https://dx.doi.org/10.1093/nar/gky1131 . DOI: 10.1093/nar/gky1131 http://doi.org/10.1093/nar/gky1131
Holmås S , Puig RR , Acencio ML , et al . The Cytoscape BioGateway App: explorative network building from the BioGateway triple store . Bioinformatics 2019 ; 36 ( 6 ): 1966 - 7 . doi: 10.1093/bioinformatics/btz835 https://dx.doi.org/10.1093/bioinformatics/btz835 . DOI: 10.1093/bioinformatics/btz835 http://doi.org/10.1093/bioinformatics/btz835
Sondag G , Haqqi T . The role of microRNAs and their targets in osteoarthritis . Curr Rheumatol Rep 2016 ; 18 ( 8 ): 56 . doi: 10.1007/s11926-016-0604-x https://dx.doi.org/10.1007/s11926-016-0604-x . DOI: 10.1007/s11926-016-0604-x http://doi.org/10.1007/s11926-016-0604-x http://link.springer.com/10.1007/s11926-016-0604-x http://link.springer.com/10.1007/s11926-016-0604-x
Zhou G , Soufan O , Ewald J , et al . NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis . Nucleic Acids Res 2019 ; 47 ( W1 ): W234 - 41 . doi: 10.1093/nar/gkz240 https://dx.doi.org/10.1093/nar/gkz240 . DOI: 10.1093/nar/gkz240 http://doi.org/10.1093/nar/gkz240 https://academic.oup.com/nar/article/47/W1/W234/5424072 https://academic.oup.com/nar/article/47/W1/W234/5424072
Chaudhuri K , Chatterjee R . MicroRNA detection and target prediction: integration of computational and experimental approaches . DNA Cell Biol 2007 ; 26 ( 5 ): 321 - 37 . doi: 10.1089/dna.2006.0549 https://dx.doi.org/10.1089/dna.2006.0549 . DOI: 10.1089/dna.2006.0549 http://doi.org/10.1089/dna.2006.0549
Sobhan M , Mehdinejad M , Jamaladini M , et al . Association between aspartic acid repeat polymorphism of the asporin gene and risk of knee osteoarthritis: a systematic review and meta-analysis . Acta Orthop Traumatol Turc 2017 ; 51 ( 5 ): 409 - 15 . doi: 10.1016/j.aott.2017.08.001 https://dx.doi.org/10.1016/j.aott.2017.08.001 . DOI: 10.1016/j.aott.2017.08.001 http://doi.org/10.1016/j.aott.2017.08.001 http://www.aott.org.tr/en/association-between-aspartic-acid-repeat-polymorphism-of-the-asporin-gene-and-risk-of-knee-osteoarthritis-a-systematic-review-and-meta-analysis-133631 http://www.aott.org.tr/en/association-between-aspartic-acid-repeat-polymorphism-of-the-asporin-gene-and-risk-of-knee-osteoarthritis-a-systematic-review-and-meta-analysis-133631
Ungethuem U , Haeupl T , Witt H , et al . Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis . Physiol Genomics 2010 ; 42A ( 4 ): 267 - 82 . doi: 10.1152/physiolgenomics.00004.2010 https://dx.doi.org/10.1152/physiolgenomics.00004.2010 . DOI: 10.1152/physiolgenomics.00004.2010 http://doi.org/10.1152/physiolgenomics.00004.2010
Wang Q , Rozelle AL , Lepus CM , et al . Identification of a central role for complement in osteoarthritis . Nat Med 2011 ; 17 ( 12 ): 1674 - 9 . doi: 10.1038/nm.2543 https://dx.doi.org/10.1038/nm.2543 . DOI: 10.1038/nm.2543 http://doi.org/10.1038/nm.2543 https://doi.org/10.1038/nm.2543 https://doi.org/10.1038/nm.2543
Thomas G , Duan R , Pettit A , et al . Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes . BMC Musculoskelet Disord 2013 ; 14 : 354 . doi: 10.1186/1471-2474-14-354 https://dx.doi.org/10.1186/1471-2474-14-354 . DOI: 10.1186/1471-2474-14-354 http://doi.org/10.1186/1471-2474-14-354 https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471-2474-14-354 https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471-2474-14-354
Lambert C , Dubuc J , Montell E , et al . Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane . Arthritis Rheumatol 2014 ; 66 ( 4 ): 960 - 8 . doi: 10.1002/art.38315 https://dx.doi.org/10.1002/art.38315 . DOI: 10.1002/art.38315 http://doi.org/10.1002/art.38315 https://onlinelibrary.wiley.com/toc/23265205/66/4 https://onlinelibrary.wiley.com/toc/23265205/66/4
Ramos YF , Bos SD , Lakenberg N , et al . Genes expressed in blood link osteoarthritis with apoptotic pathways . Ann Rheum Dis 2014 ; 73 ( 10 ): 1844 - 53 . doi: 10.1136/annrheumdis-2013-203405 https://dx.doi.org/10.1136/annrheumdis-2013-203405 . DOI: 10.1136/annrheumdis-2013-203405 http://doi.org/10.1136/annrheumdis-2013-203405 https://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2013-203405 https://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2013-203405
Woetzel D , Huber R , Kupfer P , et al . Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation . Arthritis Res Ther 2014 ; 16 ( 2 ): R84 . doi: 10.1186/ar4526 https://dx.doi.org/10.1186/ar4526 . DOI: 10.1186/ar4526 http://doi.org/10.1186/ar4526 http://arthritis-research.biomedcentral.com/articles/10.1186/ar4526 http://arthritis-research.biomedcentral.com/articles/10.1186/ar4526
Ma H , Wu W , Yang X , et al . Genetic effects of common polymorphisms in estrogen receptor alpha gene on osteoarthritis: a meta-analysis . Int J Clin Exp Med 2015 ; 8 ( 8 ): 13446 - 54 .
Köhrle J . Selenium and the thyroid . Curr Opin Endocrinol Diabetes Obes 2015 ; 22 ( 5 ): 392 - 401 . doi: 10.1097/MED.0000000000000190 https://dx.doi.org/10.1097/MED.0000000000000190 . DOI: 10.1097/MED.0000000000000190 http://doi.org/10.1097/MED.0000000000000190
Bianco AC , da Conceição RR . The deiodinase trio and thyroid hormone signaling . Methods Mol Biol 2018 ; 1801: 67 - 83 . doi: 10.1007/978-1-4939-7902-8_8 https://dx.doi.org/10.1007/978-1-4939-7902-8_8 . DOI: 10.1007/978-1-4939-7902-8_8 http://doi.org/10.1007/978-1-4939-7902-8_8
Dubin RL , Hall CM , Pileri CL , et al . Thermostable (SULT1A1) and thermolabile (SULT1A3) phenol sulfotransferases in human osteosarcoma and osteoblast cells . Bone 2001 ; 28(6): 617 - 24 . doi: 10.1016/s8756-3282(01)00463-x https://dx.doi.org/10.1016/s8756-3282(01)00463-x . DOI: 10.1016/s8756-3282(01)00463-x http://doi.org/10.1016/s8756-3282(01)00463-x
Tong Z , Li H , Goljer I , et al . In vitro glucuronidation of thyroxine and triiodothyronine by liver microsomes and recombinant human UDP-glucuronosyltransferases . Drug Metab Dispos 2007 ; 35 ( 12 ): 2203 - 10 . doi: 10.1124/dmd.107.016972 https://dx.doi.org/10.1124/dmd.107.016972 . DOI: 10.1124/dmd.107.016972 http://doi.org/10.1124/dmd.107.016972 http://dmd.aspetjournals.org/lookup/doi/10.1124/dmd.107.016972 http://dmd.aspetjournals.org/lookup/doi/10.1124/dmd.107.016972
Endisha H , Rockel J , Jurisica I , et al . The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets . JCI Insight 2018 ; 3 ( 17 ): e121630 . doi: 10.1172/jci.insight.121630 https://dx.doi.org/10.1172/jci.insight.121630 . DOI: 10.1172/jci.insight.121630 http://doi.org/10.1172/jci.insight.121630 https://insight.jci.org/articles/view/121630 https://insight.jci.org/articles/view/121630
Zhang P , Gao G , Zhou Z , et al . microRNA-130b downregulation potentiates chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SOX9 . Braz J Med Biol Res 2021 ; 54(4): e10345 . doi: 10.1590/1414-431X202010345 https://dx.doi.org/10.1590/1414-431X202010345 . DOI: 10.1590/1414-431X202010345 http://doi.org/10.1590/1414-431X202010345
Zhang W , Cheng P , Hu W , et al . Correction: inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9 . Cancer Gene Ther 2020 ; 27(10-11): 836 - 7 . doi: 10.1038/s41417-020-0202-y https://dx.doi.org/10.1038/s41417-020-0202-y . DOI: 10.1038/s41417-020-0202-y http://doi.org/10.1038/s41417-020-0202-y
Zhang L , Sui C , Zhang Y , et al . Knockdown of hsa_circ_0134111 alleviates the symptom of osteoarthritis via sponging microRNA-224-5p . Cell Cycle 2021 ; 20(11): 1052 - 66 . doi: 10.1080/15384101.2021.1919838 https://dx.doi.org/10.1080/15384101.2021.1919838 . DOI: 10.1080/15384101.2021.1919838 http://doi.org/10.1080/15384101.2021.1919838
Zhang RK , Li GW , Jiang D , et al . Transcription factors analysis of subchondral bone in early experimental osteoarthritis based on gene expression profiles . Zhongguo Gu Shang 2018 ; 31 ( 2 ): 165 - 9 . doi: 10.3969/j.issn.1003-0034.2018.02.014 https://dx.doi.org/10.3969/j.issn.1003-0034.2018.02.014 DOI: 10.3969/j.issn.1003-0034.2018.02.014 http://doi.org/10.3969/j.issn.1003-0034.2018.02.014
Yi P , Xu X , Yao J , et al . Analysis of mRNA expression and DNA methylation datasets according to the genomic distribution of CpG sites in osteoarthritis . Front Genet 2021 ; 12 : 618803 . doi: 10.3389/fgene.2021.618803 https://dx.doi.org/10.3389/fgene.2021.618803 . DOI: 10.3389/fgene.2021.618803 http://doi.org/10.3389/fgene.2021.618803 https://www.frontiersin.org/articles/10.3389/fgene.2021.618803/full https://www.frontiersin.org/articles/10.3389/fgene.2021.618803/full
Luobu Z , Wang L , Jiang D , et al . CircSCAPER contributes to IL-1β-induced osteoarthritis in vitro via miR-140-3p/EZH2 axis . Bone Joint Res 2022 ; 11(2): 61 - 72 . doi: 10.1302/2046-3758.112.BJR-2020-0482.R2 https://dx.doi.org/10.1302/2046-3758.112.BJR-2020-0482.R2 . DOI: 10.1302/2046-3758.112.BJR-2020-0482.R2 http://doi.org/10.1302/2046-3758.112.BJR-2020-0482.R2
Wang Z , Ni S , Zhang H , et al . Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression . Life Sci 2021 ; 268: 118733 . doi: 10.1016/j.lfs.2020.118733 https://dx.doi.org/10.1016/j.lfs.2020.118733 . DOI: 10.1016/j.lfs.2020.118733 http://doi.org/10.1016/j.lfs.2020.118733
Nagase H , Nagasawa Y , Tachida Y , et al . Deiodinase 2 upregulation demonstrated in osteoarthritis patients cartilage causes cartilage destruction in tissue-specific transgenic rats . Osteoarthritis Cartilage 2013 ; 21 ( 3 ): 514 - 23 . doi: 10.1016/j.joca.2012.12.013 https://dx.doi.org/10.1016/j.joca.2012.12.013 . DOI: 10.1016/j.joca.2012.12.013 http://doi.org/10.1016/j.joca.2012.12.013 https://linkinghub.elsevier.com/retrieve/pii/S1063458413000022 https://linkinghub.elsevier.com/retrieve/pii/S1063458413000022
Meulenbelt I , Bos SD , Chapman K , et al . Meta-analyses of genes modulating intracellular T3 bio-availability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility . Ann Rheum Dis 2011 ; 70(1): 164 - 7 . doi: 10.1136/ard.2010.133660 https://dx.doi.org/10.1136/ard.2010.133660 . DOI: 10.1136/ard.2010.133660 http://doi.org/10.1136/ard.2010.133660
关联资源
相关文章
相关作者
相关机构