FOLLOWUS
1. 1School of Basic Medical Sciences, Shandong University, Jinan 250012, China
2. 2Zhejiang University Medical Center, Hangzhou 311121, China
3. 3Department of Neurology, Pingdu People’s Hospital, Qingdao, Shandong 266799, China
4. 4Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong 272007, China
* yanleihao301@live.com
收稿日期:2022-01-06,
录用日期:2022-4-2,
网络出版日期:2022-09-29,
纸质出版日期:2022-12-31
Scan QR Code
李冉, 吕占云, 李燕新, 等. 酪氨酸蛋白激酶结合蛋白缺乏对携带
Ran Li, Zhanyun Lv, Yanxin Li, et al. Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer’s Disease Mouse Model Carrying a
李冉, 吕占云, 李燕新, 等. 酪氨酸蛋白激酶结合蛋白缺乏对携带
Ran Li, Zhanyun Lv, Yanxin Li, et al. Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer’s Disease Mouse Model Carrying a
目的
研究酪氨酸蛋白激酶结合蛋白(TYRO protein kinase-binding protein,TYROBP)缺乏对携带
PSEN1
p.G378E突变的新型阿尔茨海默病(Alzheimer’s disease,AD)小鼠模型的学习行为、胶质细胞活化、促炎因子以及Tau磷酸化的影响。
方法
我们基于前期发现的一个携带
PSEN1
突变的AD家族,构建了一种携带
PSEN1
p.G378E突变的新型AD小鼠模型,与TYROBP缺乏小鼠杂交红后获得杂合子小鼠(
PSEN1
G378E/WT
;
Tyrobp
+/-
)和纯合子小鼠(
PSEN1
G378E/G378E
;
Tyrobp
-
/
-
)。采用水迷宫实验检测小鼠的空间学习和记忆能力;处死小鼠后摘取海马用于进一步分析。采用免疫荧光法检测TYROBP的表达及小胶质细胞和星形胶质细胞的数量,采用免疫印迹法检测Tau蛋白和磷酸化Tau蛋白的表达水平,采用酶联免疫吸附测定检测促炎因子的水平。
结果
小鼠海马小胶质细胞特异性表达TYROBP。TYROBP缺乏能防止
PSEN1
G378E
突变小鼠模型学习行为的恶化,同时降低海马胶质细胞和星形胶质细胞的数量以及白细胞介素-6,白细胞介素-1
β
和肿瘤坏死因子-
α
的水平(
P
<
0.05)。与
PSEN1
G378E/G378E
小鼠相比,
PSEN1
G378E/G378E
;
Tyrobp
-/-
小鼠的AT8/Tau5、PHF1/Tau5、pT181/Tau5、pT231/Tau5、p-ERK/ERK比值均较高(
P
<
0.05)。
结论
TYROBP缺乏可能对AD小鼠模型的神经炎症过程具有保护作用。然而,包括小胶质细胞和星形胶质细胞激活以及促炎因子释放在内的神经炎症过程与磷酸化Tau之间的关系还需进一步研究。
Objective
To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior
glia activation and pro-inflammatory cycokines
and Tau phosphorylation of a new Alzheimer’s disease (AD) mouse model carrying a
PSEN1
p.G378E mutation.
Methods
A new AD mouse model carrying
PSEN1
p.G378E mutation was built based on our previously found AD family which might be ascribed to the
PSEN1
mutation
and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (
PSEN1
G378E/WT
;
Tyrobp
+/-
) and the homozygous hybrid mice (
PSEN1
G378E/G378E
;
Tyrobp
-/-
). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed
the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau)
and ELISA to measure the levels of pro-inflammatory cytokines.
Results
Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in
PSEN1
G378E
mutation mouse model prevented the deterioration of learning behavior
decreased the numbers of microglia and astrocytes
and the levels of interleukin-6
interleukin-1β and tumor necrosis factor-
α
in the hippocampus (all
P
<
0.05). The ratios of AT8/Tau5
PHF1/Tau5
pT181/Tau5
pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (
PSEN1
G378E/G378E
;
Tyrobp
-/-
mice) compared with
PSEN1
G378E/G378E
mice (all
P
<
0.05).
Conclusions
TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However
the relationship between neuroinflammation processes involving microglia and astrocyte activation
and release of pro-inflammatory cytokines
and p-Tau pathology needs further study.
Cacace R , Sleegers K , Van Broeckhoven C . Molecular genetics of early-onset Alzheimer’s disease revisited . Alzheimers Dement 2016 ; 12 ( 6 ): 733 - 48 . doi: 10.1016/j.jalz.2016.01.012 https://dx.doi.org/10.1016/j.jalz.2016.01.012 . DOI: 10.1016/j.jalz.2016.01.012 http://doi.org/10.1016/j.jalz.2016.01.012
Rosenberg RN , Lambracht-Washington D , Yu G , et al . Genomics of Alzheimer disease: a review . JAMA Neurol 2016 ; 73 ( 7 ): 867 - 74 . doi: 10.1001/jamaneurol.2016.0301 https://dx.doi.org/10.1001/jamaneurol.2016.0301 . DOI: 10.1001/jamaneurol.2016.0301 http://doi.org/10.1001/jamaneurol.2016.0301
Besancon R , Lorenzi A , Cruts M , et al . Missense mutation in exon 11 (Codon 378) of the presenilin-1 gene in a French family with early-onset Alzheimer’s disease and transmission study by mismatch enhanced allele specific amplification . Mutations in brief no. 141. Online. besancon@rockefeller1.univ.lyon1.fr. Hum Mutat 1998 ; 11 ( 6 ): 481 . doi: 10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q https://dx.doi.org/10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q . DOI: 10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q http://doi.org/10.1002/(SICI)1098-1004(1998)11:6<481::AID-HUMU12>3.0.CO;2-Q
Finckh U , Kuschel C , Anagnostouli M , et al . Novel mutations and repeated findings of mutations in familial Alzheimer disease . Neurogenetics 2005 ; 6 ( 2 ): 85 - 9 . doi: 10.1007/s10048-005-0211-x https://dx.doi.org/10.1007/s10048-005-0211-x . DOI: 10.1007/s10048-005-0211-x http://doi.org/10.1007/s10048-005-0211-x
Ikeuchi T , Kaneko H , Miyashita A , et al . Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations . Dement Geriatr Cogn Disord 2008 ; 26 ( 1 ): 43 - 9 . doi: 10.1159/000141483 https://dx.doi.org/10.1159/000141483 . DOI: 10.1159/000141483 http://doi.org/10.1159/000141483 https://www.karger.com/Article/FullText/141483 https://www.karger.com/Article/FullText/141483
Lv Z , Hu L , Yang Y , et al . Comparative study of microRNA profiling in one Chinese family with PSEN1 G378E mutation . Metab Brain Dis 2018 ; 33 ( 5 ): 1711 - 20 . doi: 10.1007/s11011-018-0279-2 https://dx.doi.org/10.1007/s11011-018-0279-2 . DOI: 10.1007/s11011-018-0279-2 http://doi.org/10.1007/s11011-018-0279-2 https://doi.org/10.1007/s11011-018-0279-2 https://doi.org/10.1007/s11011-018-0279-2
Turnbull I R , Colonna M . Activating and inhibitory functions of DAP12 . Nat Rev Immunol 2007 ; 7 ( 2 ): 155 - 61 . doi: 10.1038/nri2014 https://dx.doi.org/10.1038/nri2014 . DOI: 10.1038/nri2014 http://doi.org/10.1038/nri2014
Dardiotis E , Siokas V , Pantazi E , et al . A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature . Neurobiol Aging 2017 ; 53 : 113 - 94 . doi: 10.1016/j.neurobiolaging.2017.01.015 https://dx.doi.org/10.1016/j.neurobiolaging.2017.01.015 . DOI: 10.1016/j.neurobiolaging.2017.01.015 http://doi.org/10.1016/j.neurobiolaging.2017.01.015
Zhang B , Gaiteri C , Bodea LG , et al . Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease . Cell 2013 ; 153 ( 3 ): 707 - 20 . doi: 10.1016/j.cell.2013.03.030 https://dx.doi.org/10.1016/j.cell.2013.03.030 . DOI: 10.1016/j.cell.2013.03.030 http://doi.org/10.1016/j.cell.2013.03.030
Pottier C , Ravenscroft TA , Brown PH , et al . TYROBP genetic variants in early-onset Alzheimer’s disease . Neurobiol Aging 2016 ; 48 : 222 - 9 . doi: 10.1016/j.neurobiolaging.2016.07.028 https://dx.doi.org/10.1016/j.neurobiolaging.2016.07.028 . DOI: 10.1016/j.neurobiolaging.2016.07.028 http://doi.org/10.1016/j.neurobiolaging.2016.07.028
Zhong L , Zhang ZL , Li X , et al . TREM2/DAP 12 complex regulates inflammatory responses in microglia via the JNK signaling pathway . Front Aging Neurosci 2017 ; 9 : 204 . doi: 10.3389/fnagi.2017.00204 https://dx.doi.org/10.3389/fnagi.2017.00204 . DOI: 10.3389/fnagi.2017.00204 http://doi.org/10.3389/fnagi.2017.00204
Hong S , Beja-Glasser VF , Nfonoyim BM , et al . Complement and microglia mediate early synapse loss in Alzheimer mouse models . Science 2016 ; 352 ( 6286 ): 712 - 6 . doi: 10.1126/science.aad8373 https://dx.doi.org/10.1126/science.aad8373 . DOI: 10.1126/science.aad8373 http://doi.org/10.1126/science.aad8373
Haure-Mirande JV , Audrain M , Fanutza T , et al . Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology . Acta Neuropathol 2017 ; 134 ( 5 ): 769 - 88 . doi: 10.1007/s00401-017-1737-3 https://dx.doi.org/10.1007/s00401-017-1737-3 . DOI: 10.1007/s00401-017-1737-3 http://doi.org/10.1007/s00401-017-1737-3
Ulland TK , Colonna M . TREM2—a key player in microglial biology and Alzheimer disease . Nat Rev Neurol 2018 ; 14 ( 11 ): 667 - 75 . doi: 10.1038/s41582-018-0072-1 https://dx.doi.org/10.1038/s41582-018-0072-1 . DOI: 10.1038/s41582-018-0072-1 http://doi.org/10.1038/s41582-018-0072-1
Ulrich JD , Ulland TK , Colonna M , et al . Elucidating the role of TREM2 in Alzheimer’s disease . Neuron 2017 ; 94 ( 2 ): 237 - 48 . doi: 10.1016/j.neuron.2017.02.042 https://dx.doi.org/10.1016/j.neuron.2017.02.042 . DOI: S0896-6273(17)30150-2 http://doi.org/S0896-6273(17)30150-2
Gratuze M , Leyns C , Holtzman DM . New insights into the role of TREM2 in Alzheimer’s disease . Mol Neurodegener 2018 ; 13 ( 1 ): 66 . doi: 10.1186/s13024-018-0298-9 https://dx.doi.org/10.1186/s13024-018-0298-9 . DOI: 10.1186/s13024-018-0298-9 http://doi.org/10.1186/s13024-018-0298-9
Jansen I E , Savage J E , Watanabe K , et al . Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk . Nat Genet 2019 ; 51 ( 3 ): 404 - 13 . doi: 10.1038/s41588-018-0311-9 https://dx.doi.org/10.1038/s41588-018-0311-9 . DOI: 10.1038/s41588-018-0311-9 http://doi.org/10.1038/s41588-018-0311-9
Webers A , Heneka MT , Gleeson PA . The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease . Immunol Cell Biol 2020 ; 98 ( 1 ): 28 - 41 . doi: 10.1111/imcb.12301 https://dx.doi.org/10.1111/imcb.12301 . DOI: 10.1111/imcb.12301 http://doi.org/10.1111/imcb.12301 https://onlinelibrary.wiley.com/toc/14401711/98/1 https://onlinelibrary.wiley.com/toc/14401711/98/1
De Strooper B , Karran E . The cellular phase of Alzheimer’s disease . Cell 2016 ; 164 ( 4 ): 603 - 15 . doi: 10.1016/j.cell.2015.12.056 https://dx.doi.org/10.1016/j.cell.2015.12.056 . DOI: 10.1016/j.cell.2015.12.056 http://doi.org/10.1016/j.cell.2015.12.056
Yang SH . Cellular and molecular mediators of neuroinflammation in Alzheimer disease . Int Neurourol J 2019 ; 23 (Suppl 2 ): S54 -S62. doi: 10.5213/inj.1938184.092 https://dx.doi.org/10.5213/inj.1938184.092 . DOI: 10.5213/inj.1938184.092 http://doi.org/10.5213/inj.1938184.092 http://einj.org/journal/view.php?doi=10.5213/inj.1938184.092 http://einj.org/journal/view.php?doi=10.5213/inj.1938184.092
Kovac A , Zilka N , Kazmerova Z , et al . Misfolded truncated protein tau induces innate immune response via MAPK pathway . J Immunol 2011 ; 187 ( 5 ): 2732 - 9 . doi: 10.4049/jimmunol.1100216 https://dx.doi.org/10.4049/jimmunol.1100216 . DOI: 10.4049/jimmunol.1100216 http://doi.org/10.4049/jimmunol.1100216 https://journals.aai.org/jimmunol/article/187/5/2732/86215/Misfolded-Truncated-Protein-Induces-Innate-Immune https://journals.aai.org/jimmunol/article/187/5/2732/86215/Misfolded-Truncated-Protein-Induces-Innate-Immune
Gibbons GS , Lee V , Trojanowski JQ . Mechanisms of cell-to-cell transmission of pathological Tau: a review . JAMA Neurol 2019 ; 76 ( 1 ): 101 - 8 . doi: 10.1001/jamaneurol.2018.2505 https://dx.doi.org/10.1001/jamaneurol.2018.2505 . DOI: 10.1001/jamaneurol.2018.2505 http://doi.org/10.1001/jamaneurol.2018.2505
Asai H , Ikezu S , Tsunoda S , et al . Depletion of microglia and inhibition of exosome synthesis halt tau propagation . Nat Neurosci 2015 ; 18 ( 11 ): 1584 - 93 . doi: 10.1038/nn.4132 https://dx.doi.org/10.1038/nn.4132 . DOI: 10.1038/nn.4132 http://doi.org/10.1038/nn.4132
Audrain M , Haure-Mirande JV , Wang M , et al . Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau . Mol Psychiatry 2019 ; 24 ( 9 ): 1383 - 97 . doi: 10.1038/s41380-018-0258-3 https://dx.doi.org/10.1038/s41380-018-0258-3 . DOI: 10.1038/s41380-018-0258-3 http://doi.org/10.1038/s41380-018-0258-3 https://doi.org/10.1038/s41380-018-0258-3 https://doi.org/10.1038/s41380-018-0258-3
Sekiya M , Wang M , Fujisaki N , et al . Integrated biology approach reveals molecular and pathological interactions among Alzheimer’s Abeta42, Tau, TREM2, and TYROBP in Drosophila models . Genome Med 2018 ; 10 ( 1 ): 26 . doi: 10.1186/s13073-018-0530-9 https://dx.doi.org/10.1186/s13073-018-0530-9 . DOI: 10.1186/s13073-018-0530-9 http://doi.org/10.1186/s13073-018-0530-9 https://doi.org/10.1186/s13073-018-0530-9 https://doi.org/10.1186/s13073-018-0530-9
关联资源
相关文章
相关作者
相关机构