FOLLOWUS
Department of Radiology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
* 86-10-66936471, E-mail: litaofeivip@163.com
收稿日期:2022-01-14,
录用日期:2022-4-19,
网络出版日期:2022-05-30,
纸质出版日期:2022-12-31
Scan QR Code
崔佳宁, 赵亚男, 王威, 等. 急性ST段抬高型心肌梗死患者的梗死范围、心脏磁共振特征跟踪应变分析的区域心肌功能与梗死位置的关系[J]. 中国医学科学杂志(英文版), 2022,37(4):309-319.
Jianing Cui, Yanan Zhao, Wei Wang, et al. Associations of Infarct Size and Regional Myocardial Function Examined by Cardiac Magnetic Resonance Feature Tracking Strain Analysis with the Infarct Location in Patients with Acute ST-Segment Elevation Myocardial Infarction[J]. Chinese medical sciences journal, 2022, 37(4): 309-319.
崔佳宁, 赵亚男, 王威, 等. 急性ST段抬高型心肌梗死患者的梗死范围、心脏磁共振特征跟踪应变分析的区域心肌功能与梗死位置的关系[J]. 中国医学科学杂志(英文版), 2022,37(4):309-319. DOI: 10.24920/004060.
Jianing Cui, Yanan Zhao, Wei Wang, et al. Associations of Infarct Size and Regional Myocardial Function Examined by Cardiac Magnetic Resonance Feature Tracking Strain Analysis with the Infarct Location in Patients with Acute ST-Segment Elevation Myocardial Infarction[J]. Chinese medical sciences journal, 2022, 37(4): 309-319. DOI: 10.24920/004060.
目的
定量评估初次接受经皮冠状动脉介入治疗的ST段抬高型心肌梗死(ST-segment elevation myocardial infarction,STEMI)患者的梗死范围、心脏磁共振特征跟踪(cardiac magnetic resonance feature tracking,CMR-FT)应变分析的区域心肌功能与梗死位置的关系。
方法
本研究选取在我院进行再灌注治疗的STEMI患者,共纳入95例连续治疗成功的患者。我们对患者的心脏磁共振图像进行回顾性分析,并将患者分为前壁心肌梗死(anterior wall myocardial infarction,AWMI)和非前壁心肌梗死(nonanterior wall myocardial infarction,NAWMI)两组。我们采用晚期钆增强图像评估梗死特征;采用基于标准cine图像的CMR-FT技术评估整体和区域径向、周向和纵向应变及应变率。用Spearman或Pearson方法评估STEMI患者的梗死范围大小、CMR-FT应变分析的区域心肌功能与梗死位置的关系。
结果
纳入AWMI患者44例,NAWMI患者51例。与NAWMI组相比,AWMI组患者的左心室强化程度明显更高(27.47±11.89比21.06±12.08 %LV;
t
= 3.928,
P
= 0.008)。对梗死区的分析显示:与NAWMI组相比,AWMI组的径向、周向和纵向应变明显下降(
Z
=-20.873,-20.918,-10.357,
P
均
<
0.001)。在AWMI组中,左心室的容积(收缩末期容积指数)、总强化质量和强化质量的范围与梗死区应变的相关性最好(
P
均
<
0.001)。
结论
在经皮冠状动脉介入治疗的STEMI患者中,与NAWMI患者相比,AWMI患者的心肌损伤范围更广泛,梗死区的心肌功能更低。
Objective
To quantitatively evaluate the associations of infarct size
regional myocardial function examined by cardiac magnetic resonance feature tracking (CMR-FT) strain analysis with infarct location in patients with ST-segment elevation myocardial infarction (STEMI) treated by primary percutaneous coronary intervention.
Methods
Cardiac magnetic resonance images were retrospectively analyzed in 95 consecutive STEMI patients with successful reperfusion. The patients were divided into the anterior wall myocardial infarction (AWMI) and nonanterior wall myocardial infarction (NAWMI) groups. Infarct characteristics were assessed by late gadolinium enhancement. Global and regional strains and associated strain rates in the radial
circumferential and longitudinal directions were assessed by CMR-FT based on standard cine images. The associations of infarct size
regional myocardial function examined by CMR-FT strain analysis with infarct location in STEMI patients were evaluated by the
Spearman
or
Pearson
method.
Results
There were 44 patients in the AWMI group and 51 in the NAWMI group. The extent of left ventricular enhanced mass was significantly larger in patients with AWMI compared with the NAWMI group (24.47±11.89
21.06±12.08 %LV;
t
=3.928
P
= 0.008). In infarct zone analysis
strains in the radial
circumferential and longitudinal directions were remarkably declined in the AWMI group compared with the NAWMI group (
z
=-20.873
-20.918
-10.357
all
P
<
0.001). The volume (end-systolic volume index)
total enhanced mass and extent of enhanced mass of the left ventricular were correlated best with infarct zone strain in the AWMI group (all
P
<
0.001).
Conclusion
In STEMI patients treated by percutaneous coronary intervention
myocardial damage is more extensive and regional myocardial function in the infarct zone is lower in the AWMI group compared with the NAWMI group.
Reisinger E , Fuerstenberg T , Malyar NM , et al . German nationwide data on current trends and management of acute myocardial infarction: discrepancies between trials and real-life . Eur Heart J 2014 ; 35 ( 15 ): 979 - 8 . doi: 10.1093/eurheartj/ehu043 https://dx.doi.org/10.1093/eurheartj/ehu043 . DOI: 10.1093/eurheartj/ehu043 http://doi.org/10.1093/eurheartj/ehu043
Offi M , Patrono C , Collet JP , et al . 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC) . Eur Heart J 2016 ; 37 ( 3 ): 267 - 15 . doi: 10.1093/eurheartj/ehv320 https://dx.doi.org/10.1093/eurheartj/ehv320 . DOI: 10.1093/eurheartj/ehv320 http://doi.org/10.1093/eurheartj/ehv320
O’Gara PT , Kushner FG , Ascheim DD , et al . 2013ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines . Circulation 2013 ; 127 ( 4 ): 529 - 5 . doi: 10.1016/j.jacc.2012.11.018 https://dx.doi.org/10.1016/j.jacc.2012.11.018 . DOI: 10.1016/j.jacc.2012.11.018 http://doi.org/10.1016/j.jacc.2012.11.018 https://www.ahajournals.org/doi/10.1161/CIR.0b013e3182742c84 https://www.ahajournals.org/doi/10.1161/CIR.0b013e3182742c84
Stone PH , Raabe DS , Jaffe AS , et al . Prognostic significance of location and type of myocardial infarction: independent adverse outcome associated with anterior location . J Am Coll Cardiol 1988 ; 11 ( 3 ): 453 - 63 . doi: 10.1016/0735-1097(88)91517-3 https://dx.doi.org/10.1016/0735-1097(88)91517-3 . DOI: 10.1016/0735-1097(88)91517-3 http://doi.org/10.1016/0735-1097(88)91517-3
De Luca G , Suryapranata H , van ‘t Hof AW , et al . Prognostic assessment of patients with acute myocardial infarction treated with primary angioplasty: implications for early discharge . Circulation 2004 ; 109 ( 22 ): 2737 - 43 . doi: 10.1161/01.CIR.0000131765.73959.87 https://dx.doi.org/10.1161/01.CIR.0000131765.73959.87 . DOI: 10.1161/01.CIR.0000131765.73959.87 http://doi.org/10.1161/01.CIR.0000131765.73959.87
Amin ST , Morrow DA , Braunwald E , et al . Dynamic TIMI risk score for STEMI . J Am Heart Assoc 2013 ; 2 ( 1 ): e003 269. doi: 10.1161/JAHA.112.003269 https://dx.doi.org/10.1161/JAHA.112.003269 . DOI: 10.1161/JAHA.112.003269 http://doi.org/10.1161/JAHA.112.003269
Emrich T , Halfmann M , Schoepf UJ , et al . CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments . Eur Radiol Exp 2021 ; 5 ( 1 ): 14 . doi: 10.1186/s41747-021-00208-2 https://dx.doi.org/10.1186/s41747-021-00208-2 . DOI: 10.1186/s41747-021-00208-2 http://doi.org/10.1186/s41747-021-00208-2
Backhaus SJ , Kowallick JT , Stiermaier T , et al . Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction . Clin Res Cardiol 2020 ; 109 ( 3 ): 339 - 49 . doi: 10.1007/s00392-019-01514-x https://dx.doi.org/10.1007/s00392-019-01514-x . DOI: 10.1007/s00392-019-01514-x http://doi.org/10.1007/s00392-019-01514-x
Smiseth OA , T orp H , Opdahl A , et al . Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 2016 ; 37 ( 15 ): 1196 - 207 . doi: 10.1093/eurheartj/ehv529 https://dx.doi.org/10.1093/eurheartj/ehv529 . DOI: 10.1093/eurheartj/ehv529 http://doi.org/10.1093/eurheartj/ehv529
Schuster A , Hor KN , Kowallick JT , et al . Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications . Circ Cardiovasc Imaging 2016 ; 9 ( 4 ): e004 077. doi: 10.1161/CIRCIMAGING.115.004077 https://dx.doi.org/10.1161/CIRCIMAGING.115.004077 . DOI: 10.1161/CIRCIMAGING.115.004077 http://doi.org/10.1161/CIRCIMAGING.115.004077
Shetye A , Nazir SA , Squire IB , et al . Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: a systematic review . World J Cardiol 2015 ; 7 ( 12 ): 948 - 60 . doi: 10.4330/wjc.v7.i12.948 https://dx.doi.org/10.4330/wjc.v7.i12.948 . DOI: 10.4330/wjc.v7.i12.948 http://doi.org/10.4330/wjc.v7.i12.948
Kirkpatrick JN , Vannan MA , Narula J , et al . Echocardiography in heart failure: applications, utility, and new horizons . J Am Coll Cardiol 2007 ; 50 ( 5 ): 381 - 96 . doi: 10.1016/j.jacc.2007.03.048 https://dx.doi.org/10.1016/j.jacc.2007.03.048 . DOI: 10.1016/j.jacc.2007.03.048 http://doi.org/10.1016/j.jacc.2007.03.048
Bodi V . Strain by feature tracking: a short summary of the journey of CMR in STEMI . JACC Cardiovasc Imaging 2019 ; 12 (7 Pt 1 ): 1199 - 201 . doi: 10.1016/j.jcmg.2018.08.009 https://dx.doi.org/10.1016/j.jcmg.2018.08.009 . DOI: 10.1016/j.jcmg.2018.08.009 http://doi.org/10.1016/j.jcmg.2018.08.009 https://linkinghub.elsevier.com/retrieve/pii/S1936878X18307319 https://linkinghub.elsevier.com/retrieve/pii/S1936878X18307319
Zghal FM , Boudiche S , Haboubi S , et al . Diagnostic accuracy of strain imaging in predicting myocardial viability after an ST-elevation myocardial infarction . Medicine (Baltimore) 2020 ; 99 ( 19 ): e195 28. doi: 10.1097/MD.0000000000019528 https://dx.doi.org/10.1097/MD.0000000000019528 . DOI: 10.1097/MD.0000000000019528 http://doi.org/10.1097/MD.0000000000019528
Eitel I , Stiermaier T , Lange T , et al . Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction . JACC Cardiovasc Imaging 2018 ; 11 ( 10 ): 1433 - 44 . doi: 10.1016/j.jcmg.2017.11.034 https://dx.doi.org/10.1016/j.jcmg.2017.11.034 . DOI: S1936-878X(17)31176-2 http://doi.org/S1936-878X(17)31176-2
Valente F , Gutierrez L , Rodríguez-Eyras L , et al . Cardiac magnetic resonance longitudinal strain analysis in acute ST-segment elevation myocardial infarction: a comparison with speckle-tracking echocardiography . Int J Cardiol Heart Vasc 2020 ; 29 : 1005 60. doi: 10.1016/j.ijcha.2020.100560 https://dx.doi.org/10.1016/j.ijcha.2020.100560 . DOI: 10.1016/j.ijcha.2020.100560 http://doi.org/10.1016/j.ijcha.2020.100560
Nazir SA , Shetye AM , Khan JN , et al . Inter-study repeatability of circumferential strain and diastolic strain rate by CMR tagging, feature tracking and tissue tracking in ST-segment elevation myocardial infarction . Int J Cardiovasc Imaging 2020 ; 36 ( 6 ): 1133 - 46 . doi: 10.1007/s10554-020-01806-8 https://dx.doi.org/10.1007/s10554-020-01806-8 . DOI: 10.1007/s10554-020-01806-8 http://doi.org/10.1007/s10554-020-01806-8
Thygesen K , Alpert JS , Jaffe AS , et al . Third universal definition of myocardial infarction . Eur Heart J 2012 ; 33 ( 20 ): 2551 - 67 . doi: 10.1093/eurheartj/ehs184 https://dx.doi.org/10.1093/eurheartj/ehs184 . DOI: 10.1093/eurheartj/ehs184 http://doi.org/10.1093/eurheartj/ehs184
Eite I , Desch S , Fuernau G , et al . Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction . J Am Coll Cardiol 2010 ; 55 ( 22 ): 2470 - 9 . doi: 10.1016/j.jacc.2010.01.049 https://dx.doi.org/10.1016/j.jacc.2010.01.049 . DOI: 10.1016/j.jacc.2010.01.049 http://doi.org/10.1016/j.jacc.2010.01.049
Cerqueira MD , Weissman NJ , Dilsizian V , et al . Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association . Circulation 2002 ; 105 ( 4 ): 539 - 42 . doi: 10.1161/hc0402.102975 https://dx.doi.org/10.1161/hc0402.102975 . DOI: 10.1161/hc0402.102975 http://doi.org/10.1161/hc0402.102975
Mahmarian JJ , Pratt CM , Boyce TM , et al . The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: quantification by thallium 201 single photon emission computed tomography . J Am Coll Cardiol 1991 ; 17 ( 2 ): 355 - 62 . doi: 10.1016/s0735-1097(10)80099-3 https://dx.doi.org/10.1016/s0735-1097(10)80099-3 . DOI: 10.1016/s0735-1097(10)80099-3 http://doi.org/10.1016/s0735-1097(10)80099-3
Lee JT , Ideker RE , Reimer KA . Myocardial infarct size and location in relation to coronary vascular bed at risk in man . Circulation 1981 ; 64 ( 3 ): 526 - 34 . doi: 10.1161/01.cir.64.3.526 https://dx.doi.org/10.1161/01.cir.64.3.526 . DOI: 10.1161/01.cir.64.3.526 http://doi.org/10.1161/01.cir.64.3.526
Elsman P , van ‘t Hof AW , de Boer MJ , et al . Impact of infarct location on left ventricular ejection fraction after correction for enzymatic infarct size in acute myocardial infarction treated with primary coronary intervention . Am Heart J 2006 ; 151 ( 6 ): 1239. e9 - 14 . doi: 10.1016/j.ahj.2005.12.006 https://dx.doi.org/10.1016/j.ahj.2005.12.006 . DOI: 10.1016/j.ahj.2005.12.006 http://doi.org/10.1016/j.ahj.2005.12.006 https://linkinghub.elsevier.com/retrieve/pii/S0002870306001372 https://linkinghub.elsevier.com/retrieve/pii/S0002870306001372
Reinstadler SJ , Thiele H , Eite I . Risk stratification by cardiac magnetic resonance imaging after ST -elevation myocardial infarction . Curr Opin Cardiol 2015 ; 30 ( 6 ): 681 - 9 . doi: 10.1097/HCO.0000000000000227 https://dx.doi.org/10.1097/HCO.0000000000000227 . DOI: 10.1097/HCO.0000000000000227 http://doi.org/10.1097/HCO.0000000000000227
Eite I , de Waha S , Wöhrle J , et al . Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction . J Am Coll Cardiol 2014 ; 64 ( 12 ): 1217 - 26 . doi: 10.1016/j.jacc.2014.06.1194 https://dx.doi.org/10.1016/j.jacc.2014.06.1194 . DOI: 10.1016/j.jacc.2014.06.1194 http://doi.org/10.1016/j.jacc.2014.06.1194
Wu KC . CMR of microvascular obstruction and hemorrhage in myocardial infarction . J Cardiovasc Magn Reson 2012 ; 14 ( 1 ): 68 . doi: 10.1186/1532-429X-14-68 https://dx.doi.org/10.1186/1532-429X-14-68 . DOI: 10.1186/1532-429X-14-68 http://doi.org/10.1186/1532-429X-14-68
Reindl M , Holzknecht M , Tiller C , et al . Impact of infarct location and size on clinical outcome after ST-elevation myocardial infarction treated by primary percutaneous coronary intervention . Int J Cardiol 2020 ; 301 : 14 - 20 . doi: 10.1016/j.ijcard.2019.11.123 https://dx.doi.org/10.1016/j.ijcard.2019.11.123 . DOI: S0167-5273(19)33043-8 http://doi.org/S0167-5273(19)33043-8
Podlesnikar T , Pizarro G , Fernández-Jiménez R , et al . Left ventricular functional recovery of infarcted and remote myocardium after ST-segment elevation myocardial infarction (METOCARD-CNIC randomized clinical trial substudy) . J Cardiovasc Magn Reson 2020 ; 22 ( 1 ): 44 . doi: 10.1186/s12968-020-00638-8 https://dx.doi.org/10.1186/s12968-020-00638-8 . DOI: 10.1186/s12968-020-00638-8 http://doi.org/10.1186/s12968-020-00638-8 https://doi.org/10.1186/s12968-020-00638-8 https://doi.org/10.1186/s12968-020-00638-8
Li S , Zhao L , Lu A , et al . Comparison of left ventricular global strain in anterior and non-anterior wall myocardial infarction with CMR tissue tracking . Front Physiol 2020 ; 11 : 530108 . doi: 10.3389/fphys.2020.530108 https://dx.doi.org/10.3389/fphys.2020.530108 . DOI: 10.3389/fphys.2020.530108 http://doi.org/10.3389/fphys.2020.530108 https://www.frontiersin.org/articles/10.3389/fphys.2020.530108/full https://www.frontiersin.org/articles/10.3389/fphys.2020.530108/full
Bogaert J , Bosmans H , Maes A , et al . Remote myocardial dysfunction after acute anterior myocardial infarction: impact of left ventricular shape on regional function: a magnetic resonance myocardial tagging study . J Am Coll Cardiol 2000 ; 35 ( 6 ): 1525 - 34 . doi: 10.1016/s0735-1097(00)00601-x https://dx.doi.org/10.1016/s0735-1097(00)00601-x . DOI: 10.1016/s0735-1097(00)00601-x http://doi.org/10.1016/s0735-1097(00)00601-x
Claus P , Omar AMS , Pedrizzetti G , et al . Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications . JACC Cardiovasc Imaging 2015 ; 8 ( 12 ): 1444 - 60 . doi: 10.1016/j.jcmg.2015.11.001 https://dx.doi.org/10.1016/j.jcmg.2015.11.001 . DOI: S1936-878X(15)00845-1 http://doi.org/S1936-878X(15)00845-1
关联资源
相关文章
相关作者
相关机构