FOLLOWUS
1. 1Department of Radiology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
2. 2Department of Epidemiology and Statistics, Graduate School of Chinese People's Liberation Army General Hospital, Beijing 100853, China
3. 3Philips Healthcare, Beijing 100600, China
李涛,电子邮件:litaofeivip@163.com
收稿日期:2022-06-08,
录用日期:2022-8-10,
网络出版日期:2022-09-09,
纸质出版日期:2023-03-31
Scan QR Code
赵亚男, 崔佳宁, 张兴华, 等. ST段抬高型心肌梗死患者微血管阻塞与心脏磁共振测定的整体和局部心肌功能的关系[J]. 中国医学科学杂志(英文), 2023,38(1):11-19.
Ya-Nan Zhao, Jia-Ning Cui, Xing-Hua Zhang, et al. Relationship of Microvascular Obstruction with Global and Regional Myocardial Function Determined by Cardiac Magnetic Resonance after ST-Segment Elevation Myocardial Infarction[J]. Chinese medical sciences journal, 2023, 38(1): 11-19.
赵亚男, 崔佳宁, 张兴华, 等. ST段抬高型心肌梗死患者微血管阻塞与心脏磁共振测定的整体和局部心肌功能的关系[J]. 中国医学科学杂志(英文), 2023,38(1):11-19. DOI: 10.24920/004120.
Ya-Nan Zhao, Jia-Ning Cui, Xing-Hua Zhang, et al. Relationship of Microvascular Obstruction with Global and Regional Myocardial Function Determined by Cardiac Magnetic Resonance after ST-Segment Elevation Myocardial Infarction[J]. Chinese medical sciences journal, 2023, 38(1): 11-19. DOI: 10.24920/004120.
目的
应用心脏磁共振特追踪技术(cardiac magnetic resonance feature-tracking,CMR-FT)探讨微血管阻塞(microvascular obstruction,MVO)对ST段抬高型心肌梗死(ST segment-elevation myocardial infarction,STEMI)患者整体和局部心功能的影响。
方法
回顾性连续纳入经皮冠状动脉介入术治疗成功后且1~7 天进行心脏磁共振(cardiac magnetic resonance,CMR)检查的急性STEMI 患者。依据延迟钆增强成像(late gadolinium enhancement,LGE)将患者分为MVO阳性组和MVO阴性组。参照左心室16节段模型,将左心室心肌分为梗死区、邻近区和遥远区。利用CMR-FT,在电影图像上分别测量左心室整体以及梗死区、邻近区和遥远区的径向应变(radial strain,RS)、周向应变(circumferential strain,CS)及纵向应变(longitudinal strain,LS),并且采用独立样本t检验比较MVO阳性和MVO阴性患者之间的差异。Logistic回归分析用于探究MVO与LV功能受损的关联。
结果
在157名STEMI患者(平均年龄 56.66 ± 11.38 岁)中,发现59例MVO阳性患者(37.58%),且MVO阳性组平均MVO面积为3.00±3.76mL。与MVO阴性患者(n=98)相比,MVO阳性患者LV整体RS(
t
= -4.30,P
<
0.001)、整体CS(
t
= 4.99,
P
<
0.001)、整体LS(t=3.51,P = 0.001)显著降低。MVO阳性患者梗死区RS(
t
= -3.38,
P
=0.001)和CS(
t
= 2.64,
P
=0.01)相较于MVO阴性的患者显著降低,梗死面积显著增大(
t
= 8.37,
P
<
0.001)。在单变量Logistic 回归分析中,发生LV MVO [OR= 4.10
95%CI:2.05~8.19,
P
<
0.001) 、MVO面积[OR=1.38
95%CI:1.10~1.72,
P
=0.01
]
、心率以及LV梗死面积与CS受损显著相关。然而,在多变量Logistic回归分析中只有心率(OR=1.08,95%CI:1.03~1.13,
P
=0.001)和LV梗死面积(O
R=1.10,95% CI:1.03~1.16,
P
=0.003)是LV整体CS受损的独立影响因素。
结论
MVO阳性的STEMI患者心肌梗死面积较大,并且MVO可使左心室整体和局部心功能恶化。
Objective
To investigate the impact of microvascular obstruction (MVO) on the global and regional myocardial function by cardiac magnetic resonance feature-tracking (CMR-FT) in ST-segment-elevation myocardial infarction (STEMI) patients after percutaneous coronary intervention.
Methods
Consecutive acute STEMI patients who underwent cardiac magnetic resonance imaging 1 - 7 days after successful reperfusion by percutaneous coronary intervention treatment were included in this retrospective study. Based on the presence or absence of MVO on late gadolinium enhancement images
patients were divided into groups with MVO and without MVO. The infarct zone
adjacent zone
and remote zone were determined based on a myocardial 16-segment model. The radial strain (RS)
circumferential strain (CS)
and longitudinal strain (LS) of the global left ventricle (LV) and the infarct
adjacent
and remote zones were measured by CMR-FT from cine images and compared between patients with and without MVO using independent-samples
t
-test. Logistic regression analysis was used to assess the association of MVO with the impaired LV function.
Results
A total of 157 STEMI patients (mean age 56.66 ± 11.38 years) were enrolled. MVO was detected in 37.58% (59/157) of STEMI patients
and the mean size of MVO was 3.00 ±3.76 mL. Compared with patients without MVO (
n
=98 )
the MVO group had significantly reduced LV global RS (
t
= -4.30
P
<
0.001)
global CS (
t
= 4.99
P
<
0.001)
and global LS (
t
= 3.51
P
= 0.001). The RS and CS of the infarct zone in patients with MVO were significantly reduced (
t
= -3.
38
P
= 0.001;
t
= 2.64
P
= 0.01; respectively) and the infarct size was significantly larger (
t
= 8.37
P
<
0.001) than that of patients without MVO. The presence of LV MVO [
OR
= 4.10
95%
CI
: 2.05 - 8.19
P
<
0.001) and its size [
OR
=1.38
95%
CI
: 1.10-1.72
P
=0.01
]
along with the heart rate and LV infarct size were significantly associated with impaired LV global CS in univariable Logistic regression analysis
while only heart rate (
OR
=1.08
95%
CI
: 1.03 - 1.13
P
=0.001) and LV infarct size (
OR
=1.10
95%
CI
: 1.03 - 1.16
P
=0.003) were independent influencing factors for the impaired LV global CS in multivariable Logistic regression analysis.
Conclusion
The infarct size was larger in STEMI patients with MVO
and MVO deteriorates the global and regional LV myocardial function.
Amier RP , Tijssen RYG , Teunissen PFA , et al. Predictors of intramyocardial hemorrhage after reperfused ST-segment elevation myocardial infarction . J Am Heart Assoc 2017 ; 6 ( 8 ): e005651 . doi: 10.1161/jaha.117.005651 https://dx.doi.org/10.1161/jaha.117.005651 . DOI: 10.1161/jaha.117.005651 http://doi.org/10.1161/jaha.117.005651 https://www.ahajournals.org/doi/10.1161/JAHA.117.005651 https://www.ahajournals.org/doi/10.1161/JAHA.117.005651
Nijveldt R , Beek AM , Hirsch A , et al. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury . J Am Coll Cardiol 2008 ; 52 ( 3 ): 181 - 9 . doi: 10.1016/j.jacc.2008.04.006 https://dx.doi.org/10.1016/j.jacc.2008.04.006 . DOI: 10.1016/j.jacc.2008.04.006 http://doi.org/10.1016/j.jacc.2008.04.006
Schwaiger JP , Reinstadler SJ , Tiller C , et al. Baseline LV ejection fraction by cardiac magnetic resonance and 2D echocardiography after ST-elevation myocardial infarction—influence of infarct location and prognostic impact . Eur Radiol 2020 ; 30 ( 1 ): 663 - 71 . doi: 10.1007/s00330-019-06316-3 https://dx.doi.org/10.1007/s00330-019-06316-3 . DOI: 10.1007/s00330-019-06316-3 http://doi.org/10.1007/s00330-019-06316-3
Amzulescu MS , De Craene M , Langet H , et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies . Eur Heart J Cardiovasc Imaging 2019 ; 20 ( 6 ): 605 - 19 . doi: 10.1093/ehjci/jez041 https://dx.doi.org/10.1093/ehjci/jez041 . DOI: 10.1093/ehjci/jez041 http://doi.org/10.1093/ehjci/jez041
Wamil M , Borlotti A , Liu D , et al. Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI—an Oxford Acute Myocardial Infarction (OxAMI) study . Int J Cardiovasc Imaging 2019 ; 35 ( 7 ): 1297 - 308 . doi: 10.1007/s10554-019-01542-8 https://dx.doi.org/10.1007/s10554-019-01542-8 . DOI: 10.1007/s10554-019-01542-8 http://doi.org/10.1007/s10554-019-01542-8
Khan JN , Singh A , Nazir SA , et al. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction . Eur J Radiol 2015 ; 84 ( 5 ): 840 - 8 . doi: 10.1016/j.ejrad.2015.02.002 https://dx.doi.org/10.1016/j.ejrad.2015.02.002 . DOI: 10.1016/j.ejrad.2015.02.002 http://doi.org/10.1016/j.ejrad.2015.02.002
Everaars H , Robbers L , Götte M , et al. Strain analysis is superior to wall thickening in discriminating between infarcted myocardium with and without microvascular obstruction . Eur Radiol 2018 ; 28 ( 12 ): 5171 - 81 . doi: 10.1007/s00330-018-5493-0 https://dx.doi.org/10.1007/s00330-018-5493-0 . DOI: 10.1007/s00330-018-5493-0 http://doi.org/10.1007/s00330-018-5493-0
Fischer K , Linder OL , Erne SA , et al. Reproducibility and its confounders of CMR feature tracking myocardial strain analysis in patients with suspected myocarditis . Eur Radiol 2022 ; 32 ( 5 ): 3436 - 46 . doi: 10.1007/s00330-021-08416-5 https://dx.doi.org/10.1007/s00330-021-08416-5 . DOI: 10.1007/s00330-021-08416-5 http://doi.org/10.1007/s00330-021-08416-5
Eitel I , Stiermaier T , Lange T , et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction . JACC Cardiovasc Imaging 2018 ; 11 ( 10 ): 1433 - 44 . doi: 10.1016/j.jcmg.2017.11.034 https://dx.doi.org/10.1016/j.jcmg.2017.11.034 . DOI: S1936-878X(17)31176-2 http://doi.org/S1936-878X(17)31176-2
Gavara J , Rodriguez-Palomares JF , Valente F , et al. Prognostic value of strain by tissue tracking cardiac magnetic resonance after ST-segment elevation myocardial infarction . JACC Cardiovasc Imaging 2018 ; 11 ( 10 ): 1448 - 57 . doi: 10.1016/j.jcmg.2017.09.017 https://dx.doi.org/10.1016/j.jcmg.2017.09.017 . DOI: S1936-878X(17)30985-3 http://doi.org/S1936-878X(17)30985-3
O'Regan DP , Ariff B , Baksi AJ , et al. Salvage assessment with cardiac MRI following acute myocardial infarction underestimates potential for recovery of systolic strain . Eur Radiol 2013 ; 23 ( 5 ): 1210 - 7 . doi: 10.1007/s00330-012-2715-8 https://dx.doi.org/10.1007/s00330-012-2715-8 . DOI: 10.1007/s00330-012-2715-8 http://doi.org/10.1007/s00330-012-2715-8
Reindl M , Tiller C , Holzknecht M , et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction . Clin Res Cardiol 2021 ; 110 ( 1 ): 61 - 71 . doi: 10.1007/s00392-020-01649-2 https://dx.doi.org/10.1007/s00392-020-01649-2 . DOI: 10.1007/s00392-020-01649-2 http://doi.org/10.1007/s00392-020-01649-2
Kidambi A , Mather AN , Swoboda P , et al. Relationship between myocardial edema and regional myocardial function after reperfused acute myocardial infarction: an MR imaging study . Radiology 2013 ; 267 ( 3 ): 701 - 8 . doi: 10.1148/radiol.12121516 https://dx.doi.org/10.1148/radiol.12121516 . DOI: 10.1148/radiol.12121516 http://doi.org/10.1148/radiol.12121516
Zhao H , Lee AP , Li Z , et al. Impact of intramyocardial hemorrhage and microvascular obstruction on cardiac mechanics in reperfusion injury: a speckle-tracking echocardiographic study . J Am Soc Echocardiogr 2016 ; 29 ( 10 ): 973 - 82 . doi: 10.1016/j.echo.2016.06.011 https://dx.doi.org/10.1016/j.echo.2016.06.011 . DOI: 10.1016/j.echo.2016.06.011 http://doi.org/10.1016/j.echo.2016.06.011 https://linkinghub.elsevier.com/retrieve/pii/S0894731716302577 https://linkinghub.elsevier.com/retrieve/pii/S0894731716302577
Thygesen K , Alpert JS , Jaffe AS , et al. Third universal definition of myocardial infarction . J Am Coll Cardiol 2012 ; 60 ( 16 ): 1581 - 98 . doi: 10.1016/j.jacc.2012.08.001 https://dx.doi.org/10.1016/j.jacc.2012.08.001 . DOI: 10.1016/j.jacc.2012.08.001 http://doi.org/10.1016/j.jacc.2012.08.001
Cerqueira MD , Weissman NJ , Dilsizian V , et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association . Circulation 2002 ; 105 ( 4 ): 539 - 42 . doi: 10.1161/hc0402.102975 https://dx.doi.org/10.1161/hc0402.102975 . DOI: 10.1161/hc0402.102975 http://doi.org/10.1161/hc0402.102975
Zou Q , Zheng T , Zhou SL , et al. Quantitative evaluation of myocardial strain after myocardial infarction with cardiovascular magnetic resonance tissue-tracking imaging . Int Heart J 2020 ; 61 ( 3 ): 429 - 36 . doi: 10.1536/ihj.19-384 https://dx.doi.org/10.1536/ihj.19-384 . DOI: 10.1536/ihj.19-384 http://doi.org/10.1536/ihj.19-384
Bulluck H , Carberry J , Carrick D , et al. A noncontrast CMR risk score for long-term risk stratification in reperfused ST-segment elevation myocardial infarction . JACC Cardiovasc Imaging 2022 ; 15 ( 3 ): 431 - 40 . doi: 10.1016/j.jcmg.2021.08.006 https://dx.doi.org/10.1016/j.jcmg.2021.08.006 . DOI: 10.1016/j.jcmg.2021.08.006 http://doi.org/10.1016/j.jcmg.2021.08.006
He J , Yang W , Wu W , et al. Early diastolic longitudinal strain rate at MRI and outcomes in heart failure with preserved ejection fraction . Radiology 2022 ; 302 ( 1 ): E5 . doi: 10.1148/radiol.2021219026 https://dx.doi.org/10.1148/radiol.2021219026 . DOI: 10.1148/radiol.2021219026 http://doi.org/10.1148/radiol.2021219026
Lee JW , Hur JH , Yang DH , et al. Guidelines for cardiovascular magnetic resonance imaging from the Korean Society of Cardiovascular Imaging-Part 2: interpretation of cine, flow, and angiography data . Korean J Radiol 2019 ; 20 ( 11 ): 1477 - 90 . doi: 10.3348/kjr.2019.0407 https://dx.doi.org/10.3348/kjr.2019.0407 . DOI: 10.3348/kjr.2019.0407 http://doi.org/10.3348/kjr.2019.0407
Carrick D , Haig C , Ahmed N , et al. Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to microvascular obstruction and prognostic significance . Circ Cardiovasc Imaging 2016 ; 9 ( 1 ): e004148 . doi: 10.1161/circimaging.115.004148 https://dx.doi.org/10.1161/circimaging.115.004148 . DOI: 10.1161/circimaging.115.004148 http://doi.org/10.1161/circimaging.115.004148
Huang Y , Lei D , Chen Z , et al. Factors associated with microvascular occlusion in patients with ST elevation myocardial infarction after primary percutaneous coronary intervention . J Int Med Res 2021 ; 49 ( 6 ): 3000605211024490. doi: 10.1177/03000605211024490 https://dx.doi.org/10.1177/03000605211024490 . DOI: 10.1177/03000605211024490 http://doi.org/10.1177/03000605211024490
Podlesnikar T , Pizarro G , Fernández-Jiménez R , et al. Left ventricular functional recovery of infarcted and remote myocardium after ST-segment elevation myocardial infarction (METOCARD-CNIC randomized clinical trial substudy) . J Cardiovasc Magn Reson 2020 ; 22 : ( 1 ): 44 . doi: 10.1186/s12968-020-00638-8 https://dx.doi.org/10.1186/s12968-020-00638-8 . DOI: 10.1186/s12968-020-00638-8 http://doi.org/10.1186/s12968-020-00638-8
Lange T , Stiermaier T , Backhaus SJ , et al. Functional and prognostic implications of cardiac magnetic resonance feature tracking-derived remote myocardial strain analyses in patients following acute myocardial infarction . Clin Res Cardiol 2021 ; 110 ( 2 ): 270 - 80 . doi: 10.1007/s00392-020-01747-1 https://dx.doi.org/10.1007/s00392-020-01747-1 . DOI: 10.1007/s00392-020-01747-1 http://doi.org/10.1007/s00392-020-01747-1
Zhang L , Mandry D , Chen B , et al. Impact of microvascular obstruction on left ventricular local remodeling after reperfused myocardial infarction . J Magn Reson Imaging 2018 ; 47 ( 2 ): 499 - 510 . doi: 10.1002/jmri.25780 https://dx.doi.org/10.1002/jmri.25780 . DOI: 10.1002/jmri.25780 http://doi.org/10.1002/jmri.25780
Pankaj G , Ananth K , James RJ , et al. Ventricular longitudinal function is associated with microvascular obstruction and intramyocardial haemorrhage . Open Heart 2016 ; 3 ( 1 ): e000337 . doi: 10.1136/openhrt-2015-000337 https://dx.doi.org/10.1136/openhrt-2015-000337 . DOI: 10.1136/openhrt-2015-000337 http://doi.org/10.1136/openhrt-2015-000337
Claus P , Omar AMS , Pedrizzetti G , et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications . JACC Cardiovasc Imaging 2015 ; 8 ( 12 ): 1444 - 60 . doi: 10.1016/j.jcmg.2015.11.001 https://dx.doi.org/10.1016/j.jcmg.2015.11.001 . DOI: S1936-878X(15)00845-1 http://doi.org/S1936-878X(15)00845-1
Regenfus M , Schlundt C , Krähner R , et al. Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance . Am J Cardiol 2015 ; 116 ( 7 ): 1022 - 7 . doi: 10.1016/j.amjcard2015.06.034 https://dx.doi.org/10.1016/j.amjcard2015.06.034 . DOI: 10.1016/j.amjcard.2015.06.034 http://doi.org/10.1016/j.amjcard.2015.06.034
Smiseth OA , Torp H , Opdahl A , et al. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 2016 ; 37 ( 15 ): 1196 - 207 . doi: 10.1093/eurheartj/ehv529 https://dx.doi.org/10.1093/eurheartj/ehv529 . DOI: 10.1093/eurheartj/ehv529 http://doi.org/10.1093/eurheartj/ehv529
关联资源
相关文章
相关作者
相关机构