Chinese Medical Sciences Journal ›› 2018, Vol. 33 ›› Issue (4): 240-251.doi: 10.24920/003483
陈雪,吕毅,吴荣谦
收稿日期:
2018-06-07
接受日期:
2018-08-17
出版日期:
2018-12-30
发布日期:
2018-10-08
Chen Xue,Lv Yi,Wu Rongqian
Received:
2018-06-07
Accepted:
2018-08-17
Published:
2018-12-30
Online:
2018-10-08
摘要:
合成生物学通过在细胞中整合入功能性的基因网络,从而赋予细胞新的功能。合成生物学领域的科学家们通过过表达,阻断和重排等手段,重新编辑细胞的天然基因通路,使其完成多样的生物学功能,并应用在诸多领域,如药物筛选,生物制药,基因治疗和组织工程等等。本文重点综述目前合成生物传感器技术在疾病筛查领域的应用。我们首先介绍了合成生物传感器设计思路和方法,之后分别对简单合成生物传感器,即对单一输入信号做出相应反应的合成生物传感器,和复杂生物传感器,即对多个输入信号做出相应反应的合成生物传感器,包括布尔门生物传感器,级联放大生物传感器,延时生物传感器,振荡器生物传感器,滞后生物传感器的设计特点和应用做了介绍。尽管合成生物感受器在疾病检测方面已展现了巨大的潜在优势,但这一技术依旧处在其发展的最初阶段。在识别和构建更多的疾病相关调控系统方面有待深入研究,同时需要在设计过程中利用计算机工具进一步提高合成生物传感器的精准性。合成生物感受器的最终发展目标是成为一种将疾病诊断作为输入和疾病治疗效果作为输出的感应-效应装置,从而为将来细胞及基因水平的治疗提供一体化的诊断和治疗解决方案。
Chen Xue,Lv Yi,Wu Rongqian. Current Technologies of Synthetic Biosensors for Disease Detection: Design, Classification and Future Perspectives[J].Chinese Medical Sciences Journal, 2018, 33(4): 240-251.
Table 1
Characteristics of various simple synthetic biosensors"
Classification of signal | On/Off | Signals | Regulation factor | Regulation factor fused domain | Chimeric regulation factor | Applications | Reference |
---|---|---|---|---|---|---|---|
Antibiotic | |||||||
On and Off | Macrolide (erythromycin, clarithromycin, and roxithromycin) | MphR(A) | VP16 and KRAB | ET | Gene therapy, tissue engineering, in vivo gene function analyses, drug discovery, biopharmaceutical manufacturing | 5 | |
On and Off | Pristinamycin I | Pip | VP16 and KRAB | PIT | Compatible with the Tet-OFF system, thus two different gene activities can be controlled in the same cell | 6 | |
Amino acid | |||||||
On | L-arginine | ArgR | ART | VP16 | Gene therapy and manufacturing of protein pharmaceuticals | 7 | |
On | Tryptophan | TrpR | VP16 | TRT | Targeted gene expression control | 57 | |
Small molecular | |||||||
On and Off | Cumate | CymR | VP16 | cTA, rcTA | Regulation of gene expression level and duration | 58 | |
Gas | |||||||
On | Acetaldehyde | AlcR | - | AlcR | Therapeutic transgene dosing and biopharmaceutical manufacturing | 59 | |
On | 6-hydroxy-nicotine | HdnoR | VP16 | - | Drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing. | 60 | |
On | pH/CO2 | TDAG8 | - | - | Remote control of cellular behavior inside microfluidic devices; CO2-triggered production of biopharmaceuticals in standard bioreactors | 61 | |
Drug compound | |||||||
On | 2-phenylethyl-butyrate | EthR | VP16 | - | Generic screening platform to discover drug candidates | 62 | |
Qutam sensing signal | |||||||
On | Butyrolactones | ScbR SpbR | VP16 | SCA, SPA | Clinical application | 9 | |
On | 3-oxo-C8-HSL | TraR | NF-κB p65 | p65NTraR | Versatile gene expression control | 10 | |
Metabolites | |||||||
On | Uric acid | HucR | KRAB | mUTS | Self-sufficient control of pathologic metabolites, gene- and cell-based therapies | 54 | |
On | Bile acids | TGR5 | - | p65NTraR | Liver injuries protection | 44 | |
On | Fatty acid | TtgR | - | LSR | Metabolic disorders treatment | 63 | |
Food additive | |||||||
Off | Phloretin | TtgR | VP16 | TtgA | Biopharmaceutical manufacturing, gene- and cell- based therapies | 8 | |
On | Vanillic acid | MOR9-1 | - | - | Cell differentiation | 64 | |
On and Off | Vanillic acid | VanR | VP16 and KRAB | VanA1 and VanA4 | Biopharmaceutical manufacturing, gene- and cell- based therapies | 65 | |
Allergic biomarkers | |||||||
On | Histamine | HRH2 | - | - | Allergy diagnostics | 40 | |
On | Acrylate | AcuR | - | - | Investigate characteristics of inducible transcriptional regulators | 66 | |
On | Glucarate | CdaR | - | - | |||
On | Erythromycin | MphR | - | - | |||
On | Naringenin | TtgR | - | - | |||
Vitamin | |||||||
Off | Biotin | BirA | - | - | Cell therapy and biopharmaceutical manufacturing | 67 | |
On | Biotin | BirA | VP16 | BIT | Gene therapy, tissue engineering, biopharmaceutical manufacturing | 68 | |
Hormone | On and Off | Thyroid hormone | TSHR | - | TSR | Thyroid hormone regulation | 52 |
Inflammation factor | On | NF-kB | NF-kB-responsive elements | - | - | Inflammation monitor | 56 |
[1] |
Slomovic S, Pardee K, Collins JJ . Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A 2015; 112(47):14429-35. doi: 10.1073/pnas.1508521112.
doi: 10.1073/pnas.1508521112 pmid: 26598662 |
[2] |
Jacob F, Monod J . Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3(3):318-56. doi: 10.1016/s0022-2836(61)80072-7.
doi: 10.1016/s0022-2836(61)80072-7 pmid: 13718526 |
[3] |
Ramos JL, Martinez-Bueno M, Molina-Henares AJ , et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69(2):326-56. doi: 10.1128/MMBR.69.2.326-356.2005.
doi: 10.1128/MMBR.69.2.326-356.2005 pmid: 15944459 |
[4] |
Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89(12):5547-51. doi: 10.1073/pnas.89.12.5547.
doi: 10.1073/pnas.89.12.5547 pmid: 1319065 |
[5] |
Weber W, Fux C , Daoud-EI Baba M, et al. Macrolide- based transgene control in mammalian cells and mice. Nat Biotechnol 2002; 20(9):901-7. doi: 10.1038/nbt731.
doi: 10.1038/nbt731 pmid: 12205509 |
[6] |
Fussenegger M, Morris RP, Fux C , et al. Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 2000; 18(11):1203-8. doi: 10.1038/81208.
doi: 10.1038/81208 pmid: 11062442 |
[7] |
Hartenbach S , Daoud-El Baba M, Weber W, et al. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res 2007; 35(20):e136. doi: 10.1093/nar/gkm652.
doi: 10.1093/nar/gkm652 pmid: 2175317 |
[8] |
Gitzinger M, Kemmer C, El-Baba MD , et al. Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc Natl Acad Sci USA 2009; 106(26):10638-43. doi: 10.1073/pnas.0901501106.
doi: 10.1073/pnas.0901501106 pmid: 19549857 |
[9] |
Weber W, Schoenmakers R, Spielmann M , et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 2003; 31(14):e71. doi: 10.1093/nar/gng071.
doi: 10.1093/nar/gng071 pmid: 12853648 |
[10] |
Neddermann P, Gargioli C, Muraglia E , et al. A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep 2003; 4(2):159-65. doi: 10.1038/sj.embor.embor734.
doi: 10.1038/sj.embor.embor734 |
[11] |
Miller M, Hafner M, Sontag E , et al. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Comput Biol 2012; 8(7):e1002579. doi: ARTN e100257910.1371/journal.pcbi.1002579.
doi: ARTN e100257910.1371/journal.pcbi.1002579 pmid: 22829755 |
[12] |
Cuthbertson L, Nodwell JR . The TetR family of regulators. Microbiol Mol Biol Rev 2013; 77(3):440-75. doi: 10.1128/MMBR.00018-13.
doi: 10.1128/MMBR.00018-13 |
[13] |
Agha-Mohammadi S, Lotze MT . Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000; 105(9):1177-83. doi: 10.1172/JCI10027.
doi: 10.1172/JCI10027 pmid: 315455 |
[14] |
Urlinger S, Baron U, Thellmann M , et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 2000; 97(14):7963-8. doi: 10.1073/pnas.130192197.
doi: 10.1073/pnas.130192197 pmid: 10859354 |
[15] |
Vieyra DS, Goodell MA . Pluripotentiality and conditional transgene regulation in human embryonic stem cells expressing insulated tetracycline-ON transactivator. Stem Cells 2007; 25(10):2559-66. doi: 10.1634/stemcells.2007-0248.
doi: 10.1634/stemcells.2007-0248 pmid: 17628023 |
[16] |
Wu Z, Chen J, Ren J , et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 2009; 1(1):46-54. doi: 10.1093/jmcb/mjp003.
doi: 10.1093/jmcb/mjp003 pmid: 19502222 |
[17] |
Zhao X, Yu Y, Zhao Z , et al. Establishment of tetracycline-inducible, survivin-expressing CHO cell lines by an optimized screening method. Biosci Biotechnol Biochem 2012; 76(10):1909-12. doi: 10.1271/bbb.120395.
doi: 10.1271/bbb.120395 pmid: 23047106 |
[18] |
Jones J, Nivitchanyong T, Giblin C , et al. Optimization of tetracycline-responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnol Bioeng 2005; 91(6):722-32. doi: 10.1002/bit.20566.
doi: 10.1002/bit.20566 pmid: 15981277 |
[19] |
Forster K, Helbl V, Lederer T , et al. Tetracycline-induci-ble expression systems with reduced basal activity in mammalian cells. Nucleic Acids Res 1999; 27(2):708-10. doi: 10.1093/nar/27.2.708.
doi: 10.1093/nar/27.2.708 pmid: 148237 |
[20] |
Zhang J, Wang C, Ke N , et al. A more efficient RNAi inducible system for tight regulation of gene expression in mammalian cells and xenograft animals. RNA 2007; 13(8):1375-83. doi: 10.1261/rna.520707.
doi: 10.1261/rna.520707 pmid: 17616554 |
[21] |
Tigges M, Fussenegger M . Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20(4):449-60. doi: 10.1016/j.copbio.2009.07.009.
doi: 10.1016/j.copbio.2009.07.009 pmid: 19762224 |
[22] |
Zhao W, Bonem M , McWhite C, et al. Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit. Nat Commun 2014; 5(5):3612. doi: ARTN 361210.1038/ncomms4612.
doi: ARTN 361210.1038/ncomms4612 pmid: 24710080 |
[23] |
Weber W, Stelling J, Rimann M , et al. A synthetic time-delay circuit in mammalian cells and mice. Proc Natl Acad Sci USA 2007; 104(8):2643-8. doi: 10.1073/pnas.0606398104.
doi: 10.1073/pnas.0606398104 pmid: 17296937 |
[24] |
Tigges M, Marquez-Lago TT, Stelling J , et al. A tunable synthetic mammalian oscillator. Nature 2009; 457(7227):309-12. doi: 10.1038/nature07616.
doi: 10.1038/nature07616 |
[25] |
Tigges M, Denervaud N, Greber D , et al. A synthetic low-frequency mammalian oscillator. Nucleic Acids Res 2010; 38(8):2702-11. doi: 10.1093/nar/gkq121.
doi: 10.1093/nar/gkq121 pmid: 2860125 |
[26] |
Burrill DR, Inniss MC, Boyle PM , et al. Synthetic memory circuits for tracking human cell fate. Genes Dev 2012; 26(13):1486-97. doi: 10.1101/gad.189035.112.
doi: 10.1101/gad.189035.112 pmid: 22751502 |
[27] |
Kramer BP, Weber W, Fussenegger M . Artificial regulatory networks and cascades for discrete multilevel transgene control in mammalian cells. Biotechnol Bioeng 2003; 83(7):810-20. doi: 10.1002/bit.10731.
doi: 10.1002/bit.10731 pmid: 12889021 |
[28] |
Kramer BP, Fischer C, Fussenegger M . BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng 2004; 87(4):478-84. doi: 10.1002/bit.20142.
doi: 10.1002/bit.20142 pmid: 15286985 |
[29] |
Riglar DT, Giessen TW, Baym M , et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 2017; 35(7):653-8. doi: 10.1038/nbt.3879.
doi: 10.1038/nbt.3879 pmid: 28553941 |
[30] |
Angelici B, Mailand E, Haefliger B , et al. Synthetic biology platform for sensing and integrating endogenous transcriptional inputs in mammalian cells. Cell Rep 2016; 16(9):2525-37. doi: 10.1016/j.celrep.2016.07.061.
doi: 10.1016/j.celrep.2016.07.061 pmid: 27545896 |
[31] |
Wieland M, Fussenegger M . Engineering molecular circuits using synthetic biology in mammalian cells. Annu Rev Chem Biomol Eng. 2012; 3(1):209-34. doi: 10.1146/annurev-chembioeng-061010-114145.
doi: 10.1146/annurev-chembioeng-061010-114145 pmid: 22468602 |
[32] |
Monk NA . Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr Biol 2003; 13(16):1409-13. doi: 10.1016/s0960-9822(03)00494-9.
doi: 10.1016/s0960-9822(03)00494-9 pmid: 12932324 |
[33] |
Matsuo T, Yamaguchi S, Mitsui S , et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302(5643):255-9. doi: 10.1126/science.1086271.
doi: 10.1126/science.1086271 pmid: 12934012 |
[34] |
Inagaki N, Honma S, Ono D , et al. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 2007; 104(18):7664-9. doi: 10.1073/pnas.0607713104.
doi: 10.1073/pnas.0607713104 pmid: 17463091 |
[35] |
Schibler U. The daily rhythms of genes, cells and organs. Biological clocks and circadian timing in cells. EMBO Rep 2005; 6 Spec No( 6 Spec No):S9-S13. doi: 10.1038/sj.embor.7400424.
doi: 10.1038/sj.embor.7400424 |
[36] |
Sha W, Moore J, Chen K , et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A 2003; 100(3):975-80. doi: 10.1073/pnas.0235349100.
doi: 10.1073/pnas.0235349100 pmid: 12509509 |
[37] |
Xiong W, Ferrell JE Jr . A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 2003; 426(6965):460-5. doi: 10.1038/nature02089.
doi: 10.1038/nature02089 |
[38] |
Ausl?nder S, Fussenegger M . Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb Perspect Biol 2016; 8(7). doi: 10.1101/cshperspect.a023895
doi: 10.1101/cshperspect.a023895 pmid: 27194045 |
[39] |
Wu F, Wang X . Applications of synthetic gene networks. Sci Prog 2015; 98(Pt 3):244-52. doi: 10.3184/003685015x14368807556441.
doi: 10.3184/003685015x14368807556441 pmid: 26601339 |
[40] |
Auslander D, Eggerschwiler B, Kemmer C , et al. A designer cell-based histamine-specific human allergy profiler. Nat Commun 2014; 5:4408. doi: 10.1038/ncomms5408.
doi: 10.1038/ncomms5408 pmid: 4143915 |
[41] |
Thomas C, Pellicciari R, Pruzanski M , et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8):678-93. doi: 10.1038/nrd2619.
doi: 10.1038/nrd2619 |
[42] |
Hofmann AF . Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology 2009; 49(5):1403-18. doi: 10. 1002/hep.22789.
doi: 10. 1002/hep.22789 pmid: 19296471 |
[43] |
Péan N, Doignon I, Garcin I , et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 2013; 58(4):1451-60. doi: 10.1002/hep.26463.
doi: 10.1002/hep.26463 pmid: 23686672 |
[44] |
Bai P, Ye H, Xie M , et al. A synthetic biology-based device prevents liver injury in mice. J Hepatol 2016; 65(1):84-94. doi: 10.1016/j.jhep.2016.03.020.
doi: 10.1016/j.jhep.2016.03.020 pmid: 4914822 |
[45] |
Johnson AM, Olefsky JM . The origins and drivers of insulin resistance. Cell 2013; 152(4):673-84. doi: 10.1016/j.cell.2013.01.041.
doi: 10.1016/j.cell.2013.01.041 pmid: 23415219 |
[46] |
Samuel VT, Shulman GI . Mechanisms for insulin resis-tance: common threads and missing links. Cell 2012; 148(5):852-71. doi: 10.1016/j.cell.2012.02.017.
doi: 10.1016/j.cell.2012.02.017 |
[47] |
Ye H, Xie M, Xue S , et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat Bio-med Eng 2017; 1(1):0005. doi: 10.1038/s41551-016-0005.
doi: 10.1038/s41551-016-0005 pmid: 28480128 |
[48] |
Jacob KK, Whittaker J, Stanley FM . Insulin receptor tyrosine kinase activity and phosphorylation of tyrosines 1162 and 1163 are required for insulin-increased prolactin gene expression. Mol Cell Endocrinol 2002; 186(1):7-16. doi: 10.1016/s0303-7207(01)00674-8.
doi: 10.1016/s0303-7207(01)00674-8 pmid: 11850117 |
[49] |
Siddle K . Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 2011; 47(1):R1-10. doi: 10.1530/JME-11-0022.
doi: 10.1530/JME-11-0022 pmid: 21498522 |
[50] |
Keeley MB, Busch J, Singh R , et al. TetR hybrid transcription factors report cell signaling and are inhibited by doxycycline. BioTechniques 2005; 39(4):529-36. doi: 10.2144/000112002.
doi: 10.2144/000112002 pmid: 16235565 |
[51] |
Mullur R, Liu YY, Brent GA . Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94(2):355-82. doi: 10.1152/physrev.00030.2013.
doi: 10.1152/physrev.00030.2013 pmid: 24692351 |
[52] |
Saxena P , Charpin-El Hamri G, et al. Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc Natl Acad Sci U S A 2016; 113(5):1244-9. doi: 10.1073/pnas. 1514383113.
doi: 10.1073/pnas. 1514383113 |
[53] |
Neogi T . Clinical practice. Gout. N Engl J Med 2011; 364(5):443-52. doi: 10.1056/NEJMcp1001124.
doi: 10.1056/NEJMcp1001124 |
[54] |
Kemmer C, Gitzinger M , Daoud-El Baba M, et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 2010; 28(4):355-60. doi: 10.1038/nbt.1617.
doi: 10.1038/nbt.1617 pmid: 20351688 |
[55] |
Schukur L, Geering B, Charpin-El Hamri G , et al. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci Transl Med 2015; 7(318):318ra201. doi: 10.1126/scitranslmed.aac4964.
doi: 10.1126/scitranslmed.aac4964 |
[56] |
Smole A, Lain?cek D, Bezeljak U , et al. A Synthetic Mammalian Therapeutic Gene Circuit for Sensing and Suppressing Inflammation. Mol Ther 2017; 25(1):102-19. doi: 10.1016/ j.ymthe.2016.10.005.
doi: 10.1016/ j.ymthe.2016.10.005 pmid: 28129106 |
[57] |
Bacchus W, Weber W, Fussenegger M . Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species. Metab Eng 2013; 15(1):144-50. doi: 10.1016/j.ymben.2012.11.003.
doi: 10.1016/j.ymben.2012.11.003 pmid: 23178502 |
[58] |
Mullick A, Xu Y, Warren R , et al. The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 2006; 6(1):43. doi: 10.1186/1472-6750-6-43.
doi: 10.1186/1472-6750-6-43 pmid: 17083727 |
[59] |
Weber W, Rimann M, Spielmann M , et al. Gas-inducible transgene expression in mammalian cells and mice. Nat Biotechnol 2004; 22(11):1440-4. doi: 10.1038/nbt1021.
doi: 10.1038/nbt1021 pmid: 15502819 |
[60] |
Malphettes L, Weber CC, El-Baba MD , et al. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res 2005; 33(12):e107. doi: 10.1093/nar/gni107.
doi: 10.1093/nar/gni107 |
[61] |
Ausl?nder D, Ausl?nder S , Charpin-El Hamri G, et al. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol Cell 2014; 55(3):397-408. doi: 10.1016/j.molcel.2014.06.007.
doi: 10.1016/j.molcel.2014.06.007 pmid: 25018017 |
[62] |
Weber W, Schoenmakers R, Keller B , et al. A synthe-tic mammalian gene circuit reveals antituberculosis compounds. Proc Natl Acad Sci USA 2008; 105(29):9994-8. doi: 10.1073/pnas.0800663105.
doi: 10.1073/pnas.0800663105 |
[63] |
R?ssger K , Charpin-El-Hamri G, Fussenegger M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun 2013; 4(7):2825. doi: ARTN 282510.1038/ncomms3825.
doi: ARTN 282510.1038/ncomms3825 pmid: 24281397 |
[64] |
Saxena P, Heng BC, Bai P , et al. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. doi: 1124710.1038/ncomms11247.
doi: 1124710.1038/ncomms11247 pmid: 27063289 |
[65] |
Gitzinger M, Kemmer C, Fluri DA , et al. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res 2012; 40(5):e37. doi: 10.1093/nar/gkr1251.
doi: 10.1093/nar/gkr1251 pmid: 3300003 |
[66] |
Rogers JK, Guzman CD, Taylor ND , et al. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res 2015; 43(15):7648-60. doi: 10.1093/nar/gkv616.
doi: 10.1093/nar/gkv616 pmid: 26152303 |
[67] |
Weber W, Bacchus W , Daoud-El Baba M, et al. Vitamin H-regulated transgene expression in mammalian cells. Nucleic Acids Res 2007; 35(17):e116. doi: 10.1093/nar/gkm466.
doi: 10.1093/nar/gkm466 pmid: 17827215 |
[68] |
Weber W, Lienhart C , Daoud-EI Baba M, et al. A biotin-triggered genetic switch in mammalian cells and mice. Metab Eng 2009; 11(2):117-24. doi: 10.1016/j.ymben.2008.12.001.
doi: 10.1016/j.ymben.2008.12.001 pmid: 19271268 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1