Chinese Medical Sciences Journal ›› 2018, Vol. 33 ›› Issue (1): 45-52.doi: 10.24920/31801
何颖1,2,张迎1,王梦莹1,张萌1,张丹1,张莹1,蒋卓澄1,吴锋2,陈静1,*
收稿日期:
2017-02-20
出版日期:
2018-03-07
发布日期:
2018-03-07
通讯作者:
陈静
He Ying1,2,Zhang Ying1,Wang Mengying1,Zhang Meng1,Zhang Dan1,Zhang Ying1,Jiang Zhuocheng1,Wu Feng2,Chen Jinghong1,*
Received:
2017-02-20
Published:
2018-03-07
Online:
2018-03-07
Contact:
Chen Jinghong
摘要: 目的 筛选双氧水可以引起哪些骨生成相关基因的改变。方法 用胰岛素-转铁蛋白和亚硒酸钠的混合液诱导鼠软骨前体细胞分化为肥大软骨细胞。采用MTT法确定双氧水作用的最佳浓度和时间。采用PCR阵列检测细胞中84个骨生成相关基因的表达;并用定量RT-PCR验证PCR 阵列结果。结果 结果显示:9个基因表达上调、12个基因表达下调,这些基因编码多种功能蛋白,其中包括胶原蛋白、转录因子、骨骼发育和骨矿物质代谢相关蛋白以及细胞粘附分子等。定量RT-PCR验证了5个表达下调基因(Smad2,Smad4,转化生长因子βr1、βr3,以及基质金属蛋白酶10)。结论 双氧水改变了一些具有不同生物学功能的基因在肥大软骨细胞中的表达。结合氧化损伤与Kashin-Beck病相关的文献,我们推测这些基因有可能参与了Kashin-Beck病软骨的深层坏死。
He Ying,Zhang Ying,Wang Mengying,Zhang Meng,Zhang Dan,Zhang Ying,Jiang Zhuocheng,Wu Feng,Chen Jinghong. Gene Expression Profile of Hypertrophic Chondrocytes Treated with H2O2: A Preliminary Investigation[J].Chinese Medical Sciences Journal, 2018, 33(1): 45-52.
Table 1
Primers used in RT-PCR experiments"
Genes | Upstream primer (5’-3’) | Downstream primer (5’-3’) |
---|---|---|
GAPDH | GGGCTCATGACCACAGTCCATGC | CCTTGCCCACAGCCTTGGCA |
Col X | ACGCATCTCCCAGCACCAGAATC | GGGGCTAGCAAGTGGGCCCT |
Smad2 | ATGTCGTCCATCTTGCCATTC | AACCGTCCTGTTTTCTTTAGCTT |
Smad4 | GAGAACATTGGATGGACGACT | CACAGACGGGCATAGATCAC |
MMP10 | GCAGCCCATGAACTTGGCCACT | AGGGACCGGCTCCATACAGGG |
TGFβ2 | GACCAGAAATTCCCAGCTTCT | CAACGTCTCACACACCATCTG |
TGFβr1 | TGCCATAACCGCACTGTCA | AATGAAAGGGCGATCTAGTGATG |
TGFβr3 | ATGGCAGTGACATCCCACCACAT | AGAACGGTGAAGCTCTCCATCA |
Figure 1.
mRNA expression of type X collagen (Col X) was observed by qRT-PCR during the induction of ATDC5 differentiation. GAPDH was used as a reference gene. The mRNA levels of non-induced cultures were used as a control. Data are presented as the mean±SD from three independent experiments; *P<0.05 compared with the contols."
Table 2
Significantly down-regulated genes in hypertrophic chondrocytes treated with H2O2"
No. | ID | Symbol | Description | Fold regulation |
---|---|---|---|---|
1 | NM_009893 | Chrd | Chordin | -2.38 |
2 | NM_009931 | Col4a1 | Collagen, type XIV, alpha 1 | -2.30 |
3 | NM_009969 | Csf2 | Colony stimulating factor 2 | -3.77 |
4 | NM_007802 | Ctsk | Cathepsin K | -4.80 |
5 | NM_008610 | MMP2 | Matrix metallopeptidase 2 | -3.54 |
6 | NM_013599 | MMP9 | Matrix metallopeptidase 9 | -3.37 |
7 | NM_019471 | MMP10 | Matrix metallopeptidase 10 | -2.29 |
8 | NM_010754 | Smad2 | MAD homolog 2 (Drosophila) | -2.30 |
9 | NM_008540 | Smad4 | MAD homolog 4 (Drosophila) | -2.08 |
10 | NM_009367 | Tgfb2 | Transforming growth factor, beta 2 | -3.47 |
11 | NM_009370 | Tgfbr1 | Transforming growth factor, beta receptor 1 | -459.31 |
12 | NM_011578 | Tgfbr3 | Transforming growth factor, beta receptor 3 | -2.32 |
Table 3
Significantly up-regulated genes in hypertrophic chondrocytes treated with H2O2"
NO. | ID | Symbol | Description | Fold regulation |
---|---|---|---|---|
1 | NM_007394 | Acvr1 | Activin A receptor, type 1 | 3.47 |
2 | NM_ 009673 | Anxa5 | Annexin A5 | 2.51 |
3 | NM_007542 | Bgn | Biglycan | 2.98 |
4 | NM_007561 | Bmpr2 | Bone morphogenic protein receptor, type 2 | 2.44 |
5 | NM_181277 | Col14a1 | Collagen, type XIV, alpha 1 | 2.31 |
6 | NM_011077 | Phex | Phosphate regulating gene with homologies to endopeptidases on the X chromosome | 4.37 |
7 | NM_009263 | Spp1 | Secreted phosphoprotein 1 | 4.25 |
8 | NM_009504 | Vdr | Vitamin D receptor | 2.34 |
9 | NM_011697 | Vegfb | Vascular endothelial growth factor B | 2.17 |
Figure 3.
Scatter plot of 84 genes related to osteogenesis. Group 1 was treated with 200 μmol/L H2O2; Control Group was not exposed to H2O2. Genes whose expression levels exhibited 2-fold or greater changes were deemed to be differentially expressed. Up-regulated genes are marked with a red circle, while down-regulated genes are marked with a green circle. Black circles represent genes whose expression was unchanged."
1. |
Duan C, Guo X, Zhang XD, et al. Comparative analysis of gene expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck disease. Arthritis Rheumatol,2010; 62(3):771-80. doi:10.1002/art.27282.
doi: 10.1002/art.27282 pmid: 20131229 |
2. |
Zhang F, Guo X, Wang W, et al. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck Disease. PLoS One,2011; 6(7):e22983. doi:10.1371/journal.pone.0022983.
doi: 10.1371/journal.pone.0022983 pmid: 21829570 |
3. |
Zou K, Liu G, Wu T, et al. Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis. Osteoarthritis Cartilage,2009; 17(2):144-51. doi:10.1016/j.joca.2008.06.011.
doi: 10.1016/j.joca.2008.06.011 pmid: 18693119 |
4. |
Zhang WH, Neve J, Xu JP, et al. Selenium, iodine and fungal contamination in Yulin District (People’s Republic of China) endemic for Kashin-Beck disease. Int Orthop,2001; 25(3):188-90.
doi: 10.1007/s002640100242 pmid: 11482538 |
5. |
Guan F, Li S, Wang ZL, et al. Histopathology of chondronecrosis development in knee articular cartilage in a rat model of Kashin-Beck disease using T-2 toxin and selenium deficiency conditions. Rheumatol Int,2013; 33(1):157-66. doi:10.1007/s00296-011-2335-7.
doi: 10.1007/s00296-011-2335-7 pmid: 22258458 |
6. |
Chen JH, Xue S, Li S, et al. Oxidant damage in Kashin-Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions. J Orthop Res 2012; 30:(8):1229-37. doi:10.1002/jor.22073.
doi: 10.1002/jor.22073 pmid: 22294316 |
7. |
Allander E . Kashin-Beck disease. An analysis of research and public health activities based on a bibliography. Scand J Rheumatol Suppl,1994; 99:1-36.
doi: 10.3109/03009749409117126 pmid: 7801051 |
8. |
Wang W, Wei S, Luo M, et al. Oxidative stress and status of antioxidant enzymes in children with Kashin-Beck disease. Osteoarthritis Cartilage,2013; 21(11):1781-9. doi:10.1016/j.joca.2013.08.002.
doi: 10.1016/j.joca.2013.08.002 |
9. |
Olszewska-Slonina DM, Matewski D, Drewa G, et al. Oxidative equilibrium in the prophylaxis of degenerative joint changes: an analysis of pre and postoperative activity of antioxidant enzymes in patient with hip and knee osteoarthritis. Med Sci Monit 2010; 16(5):CR238-45.
doi: 10.1016/j.mehy.2009.07.026 pmid: 20424551 |
10. |
Biniecka M, Kennedy A, Fearon U, et al. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann Rheum Dis,2010; 69(6):1172-8. doi:10.1136/ard.2009.111211.
doi: 10.1136/ard.2009.111211 pmid: 19706618 |
11. |
Grigolo B, Roseti L, Fiorini M, et al. Enhanced lipid peroxidation in synoviocytes from patients with osteoarthritis. J Rheumatol,2003; 30(2):345-7.
doi: 10.1016/S1297-319X(02)00021-0 pmid: 12563693 |
12. |
Liochev SI . Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med,2013; 60:1-4. doi:10.1016/j.freeradbiomed.2013.02.011.
doi: 10.1016/j.freeradbiomed.2013.02.011 pmid: 23434764 |
13. |
Gao J, Deng Y, Yin C, et al. Icariside Ⅱ, a novel phosphodiesterase 5 inhibitor, protects against H2O2-induced PC12 cells death by inhibiting mitochondria-mediated autophagy. J Cell Mol Med,2017; 21(2):375-86. doi:10.1111/jcmm.12971.
doi: 10.1111/jcmm.12971 |
14. |
Lee JH, Jung HK, Han YS, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep,2016; 14(4):3777-84. doi:10.3892/mmr.2016.5706.
doi: 10.3892/mmr.2016.5706 pmid: 5042755 |
15. |
Boone DR, Micci MA, Taglialatela IG, et al. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One,2015; 10(5):e0127287. doi:10.1371/journal.pone.0127287.
doi: 10.1371/journal.pone.0127287 pmid: 26016641 |
16. |
Zhang F, Dai L, Lin W, et al. Exome sequencing identified FGF12 as a novel candidate gene for Kashin-Beck disease. Funct Integr Genomics,2016; 16(1):13-7. doi:10.1007/s10142-015-0462-z.
doi: 10.1007/s10142-015-0462-z pmid: 26290467 |
17. |
Boone DR, Micci MA, Taglialatela IG, et al. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One,2015; 10(5):e0127287. doi:10.1371/journal.pone.0127287.
doi: 10.1371/journal.pone.0127287 pmid: 26016641 |
18. |
Zhang F, Wen Y, Guo X, et al. Genome-wide association study identifies ITPR2 as a susceptibility gene for Kashin-Beck disease in Han Chinese. Arthritis Rheumatol,2015; 67(1):176-81. doi:10.1002/art.38898.
doi: 10.1002/art.38898 pmid: 25303641 |
19. |
Shen J, Li S, Chen D . TGF-β signaling and the development of osteoarthritis. Bone Res 2014; 2 pii: 14002. doi:10.1038/boneres.2014.2.
doi: 10.1038/boneres.2014.2 pmid: 25541594 |
20. |
Serra R, Johnson M, Filvaroff EH, et al. Expression of a truncated, kinase-defective TGF-beta type Ⅱ receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol,1997; 139(2):541-52.
doi: 10.1083/jcb.139.2.541 |
21. |
Blaney Davidson EN, Remst DF, Vitters EL, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol,2009; 182(12):7937-45. doi:10.4049/jimmunol.0803991.
doi: 10.4049/jimmunol.0803991 pmid: 19494318 |
22. |
Dünker N, Krieglstein K . Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem,2000; 2677(24):6982-8.
doi: 10.1046/j.1432-1327.2000.01825.x pmid: 11106407 |
23. |
van der Kraan P, Matta C, Mobasheri A . Age-related alterations in signaling pathways in articular chondrocytes: implications for the pathogenesis and progression of osteoarthritis―a mini-review. Gerontology,2016; 63(1):29-35. doi:10.1159/000448711.
doi: 10.1159/000448711 pmid: 27595269 |
24. |
Valdes AM, Spector TD, Tamm A, et al. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum,2010; 62(8):2347-52. doi:10.1002/art.27530.
doi: 10.1002/art.27530 pmid: 20506137 |
25. |
Niu W, Sun ZT, Cao XW, et al. Regulation of single herb pilose antler on the expression of Smad2 and Smad3 in the cartilage of OA rats: an experimental research. Zhongguo Zhong Xi Yi Jie He Za Zhi,2014; 34(2):209-13.
pmid: 24672947 |
26. |
Song B, Estrada KD, Lyons KM . Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev,2009; 20(5-6):379-88. doi:10.1016/j.cytogfr.2009.10.010.
doi: 10.1016/j.cytogfr.2009.10.010 pmid: 19926329 |
27. |
Tremblay KD, Hoodless PA, Bikoff EK, et al. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development,2000; 127(14):3079-90.
doi: 10.1007/s00534-005-0999-7 pmid: 10862745 |
28. |
Weinstein M, Yang X, Li C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA,1998; 95(16):9378-83. doi:10.1073/pnas.95.16.9378.
doi: 10.1073/pnas.95.16.9378 pmid: 9689088 |
29. |
Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrula-tion and later for anterior development of the mouse embryo. Genes Dev,1998; 12(1):107-19.
doi: 10.1101/gad.12.1.107 |
30. |
Li J, Huang J, Dai L, et al. miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther,2012; 14(2):R75. doi:10.1186/ar3798.
doi: 10.1186/ar3798 pmid: 22507670 |
31. |
Hughes OB, Rakosi A, Macquhae F, et al. A review of cellular and acellular matrix products: indications, techniques, and outcomes. Plast Reconstr Surg,2016; 138(3 Suppl):138S-47S. doi:10.1097/PRS.0000000000002643.
doi: 10.1097/PRS.0000000000002643 |
32. |
Pak J, Lee JH, Park KS, et al. Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix. Biores Open Access,2016; 5(1):192-200. doi:10.1089/biores.2016.0024.
doi: 10.1089/biores.2016.0024 |
33. |
Murphy G, Kn?uper V, Atkinson S, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res 2002; 4 Suppl 3:S39-49. doi:10.1186/ar572.
doi: 10.1186/ar572 |
34. |
Zeng GQ, Chen AB, Li W, et al. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet Mol Res,2015; 14(4):14811-22. doi:10.4238/2015.
doi: 10.4238/2015 pmid: 26600542 |
35. |
Jackson MT, Moradi B, Smith MM, et al. Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes. Arthritis Rheumatol,2014; 66(6):1525-36. doi:10.1002/art.38401.
doi: 10.1002/art.38401 pmid: 24574263 |
36. |
Rohani MG , McMahan RS, Razumova MV, et al. MMP-10 regulates collagenolytic activity of alternatively activated resident macrophages. J Invest Dermatol,2015; 135(10):2377-84. doi:10.1038/jid.2015.167.
doi: 10.1038/jid.2015.167 pmid: 25927164 |
37. |
Appleton CT, Pitelka V, Henry J, et al. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum,2007; 56(6):1854-68. doi:10.1002/art.22711.
doi: 10.1002/art.22711 pmid: 17530714 |
38. |
Dahlberg L, Billinghurst RC, Manner P, et al. Selective enhancement of collagenase-mediated cleavage of resident type Ⅱ collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase1 (matrix metalloproteinase 1). Arthritis Rheum,2000; 43(3):673-82. doi:10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8
doi: 10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO |
39. |
Kozawa E, Nishida Y, Cheng XW, et al. Osteoarthritic change is delayed in a Ctsk-knockout mouse model of osteoarthritis. Arthritis Rheum,2012; 64(2):454-64. doi:10.1002/art.33398.
doi: 10.1002/art.33398 pmid: 21968827 |
[1] | 平芬, 曹芹, 林桦, 韩书芝. N-乙酰半胱氨酸对PM2.5致大鼠肺损伤时MAPK主要通路蛋白活化及氧化炎症反应的影响[J]. Chinese Medical Sciences Journal, 2019, 34(4): 270-276. |
[2] | 潘艳芳, 贾晓涛, 宋二飞, 彭小忠. 黄芪甲苷拮抗Aβ1-42所致大鼠氧化应激,神经炎症和认知功能损伤[J]. Chinese Medical Sciences Journal, 2018, 33(1): 29-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1