1. Musso D, Gubler DJ.Zika virus. Clin Microbiol Rev 2016; 29(3):487-524. doi: 10.1128/CMR.00072-15. 2. Plourde AR, Bloch EM.A literature review of Zika virus. Emerg Infect Dis 2016; 22(7):1185-92. doi: 10.3201/eid2207.151990. 3. Hasan S, Saeed S, Panigrahi R, et al.Zika virus: a global public health menace: a comprehensive update. J Int Soc Prev Community Dent 2019; 9(4):316-27. doi: 10.4103/jispcd.JISPCD_433_18. 4. Macnamara FN.Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 1954; 48(2):139-45. doi: 10.1016/0035-9203(54)90006-1. 5. Dick GW, Kitchen SF, Haddow AJ.Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 1952; 46(5):509-20. doi: 10.1016/0035-9203(52)90042-4. 6. Barrows NJ, Campos RK, Liao KC, et al.Biochemistry and molecular biology of Flaviviruses. Chem Rev 2018;118(8):4448-82. doi: 10.1021/acs.chemrev.7b00719. 7. Leonhard SE, Mandarakas MR, Gondim FAA, et al.Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol 2019;15(11):671-83. doi: 10.1038/s41582-019-0250-9. 8. Cao-Lormeau VM, Blake A, Mons S, et al.Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387(10027):1531-9. doi: 10.1016/S0140-6736(16)00562-6. 9. Hancock WT, Marfel M, Bel M.Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 2014; 20(11):1960. doi: 10.3201/eid2011.141380. 10. Musso D, Nilles EJ, Cao-Lormeau VM.Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect 2014; 20(10):O595-6. doi: 10.1111/1469-0691.12707. 11. Musso D, Ko AI, Baud D.Zika virus infection—after the pandemic. N Engl J Med 2019; 381(15):1444-57. doi: 10.1056/NEJMra1808246. 12. Song Y, Mugavero J, Stauft CB, et al.Dengue and Zika virus 5' untranslated regions harbor internal ribosomal entry site functions. mBio 2019; 10(2):e00459-19. doi: 10.1128/mBio.00459-19. 13. Shi Y, Gao GF.Structural biology of the Zika virus. Trends Biochem Sci 2017; 42(6):443-56. doi: 10.1016/j.tibs.2017.02.009. 14. Pelletier J, Sonenberg N.Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334(6180):320-5. doi: 10.1038/334320a0. 15. Jang SK, Kräusslich HG, Nicklin MJ, et al.A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988; 62(8):2636-43. doi: 10.1128/JVI.62.8.2636-2643. 16. Jaafar ZA, Kieft JS.Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol 2019; 17(2):110-23. doi: 10.1038/s41579-018-0117-x. 17. Mailliot J, Martin F.Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev RNA 2018; 9(2):e1458. doi: 10.1002/wrna.1458. 18. Godet AC, David F, Hantelys F, et al.IRES trans-acting factors, key actors of the stress response. Int J Mol Sci 2019; 20(4):924. doi: 10.3390/ijms20040924. 19. López-Ulloa B, Fuentes Y, Pizarro-Ortega MS, et al.RNA-binding proteins as regulators of internal initiation of viral mRNA translation. Viruses 2022; 14(2):188. doi: 10.3390/v14020188. 20. Kafasla P, Morgner N, Robinson CV, et al.Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J 2010; 29(21):3710-22. doi: 10.1038/emboj.2010.231. 21. Asnani M, Kumar P, Hellen CU.Widespread distribution and structural diversity of Type IV IRESs in members of Picornaviridae. Virology 2015; 478:61-74. doi: 10.1016/j.virol.2015.02.016. 22. Kafasla P, Morgner N, Pöyry TA, et al.Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell 2009; 34(5):556-68. doi: 10.1016/j.molcel.2009.04.015. 23. Xi J, Ye F, Wang G, et al.Polypyrimidine tract-binding protein regulates Enterovirus 71 translation through interaction with the internal ribosomal entry site. Virol Sin 2019; 34(1):66-77. doi: 10.1007/s12250-019-00089-1. 24. Schultz DE, Hardin CC, Lemon SM.Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5'-nontranslated RNA of hepatitis A virus. J Biol Chem 1996; 271(24):14134-42. doi: 10.1074/jbc.271.24.14134. 25. Ali N, Siddiqui A.Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 1995; 69(10):6367-75. doi: 10.1128/JVI.69.10.6367-6375.1995. 26. Hunt SL, Jackson RJ.Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 1999; 5(3):344-59. doi: 10.1017/s1355838299981414. 27. Verma B, Bhattacharyya S, Das S.Polypyrimidine tract-binding protein interacts with coxsackievirus B3 RNA and influences its translation. J Gen Virol 2010; 91(Pt 5):1245-55. doi: 10.1099/vir.0.018507-0. 28. Kafasla P, Mickleburgh I, Llorian M, et al.Defining the roles and interactions of PTB. Biochem Soc Trans 2012; 40(4):815-20. doi: 10.1042/BST20120044. 29. Iioka H, Loiselle D, Haystead TA, et al.Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res 2011; 39(8):e53. doi: 10.1093/nar/gkq1316. Epub 2011 Feb 7. 30. De Nova-Ocampo M, Villegas-Sepúlveda N, del Angel RM. Translation elongation factor-1alpha, La, and PTB interact with the 3' untranslated region of dengue 4 virus RNA. Virology 2002; 295(2):337-47. doi: 10.1006/viro.2002.1407. |