[1] |
Pigg MH, Bygum A, Ganemo A, et al. Spectrum of autosomal recessive congenital ichthyosis in Scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients. Acta DermVenerol 2016; 96(7):932-7. doi: 10.2340/00015555-2418.
doi: 10.2340/00015555-2418
|
[2] |
Youssefian L, Vahidnezhad H, Saeidian AH, et al. Autosomal recessive congenital ichthyosis: genomic landscape and phenotypic spectrum in a cohort of 125 consanguineous families. Hum Mutat 2019; 40(3):288-98. doi: 10.1002/humu.23695.
doi: 10.1002/humu.23695
pmid: 30578701
|
[3] |
Vahlquist A, Fischer J, Törmä H. Inherited nonsyndromic ichthyoses: an update on pathophysiology, diagnosis and treatment. Am J Clin Dermatol 2018; 19(1):51-66. doi: 10.1007/s40257-017-0313-x.
doi: 10.1007/s40257-017-0313-x
pmid: 28815464
|
[4] |
Zimmer AD, Kim GJ, Hotz A, et al. Sixteen novel mutations in PNPLA1 in patients with autosomal recessive congenital ichthyosis reveal the importance of an extended patatin domain in PNPLA 1 that is essential for proper human skin barrier function. Br J Dermatol 2017; 17 (2):445-55. doi: 10.1111/bjd.15308.
doi: 10.1111/bjd.15308
|
[5] |
Vahidnezhad H, Youssefian L, Saeidian AH, et al. Gene-targeted next generation sequencing identifies PNPLA1 mutations in patients with a phenotypic spectrum of autosomal recessive congenital ichthyosis: the impact of consanguinity. J Invest Dermatol 2017; 137(3):678-85. doi: 10.1016/j.jid.2016.11.012.
doi: S0022-202X(16)32653-7
pmid: 27884779
|
[6] |
Ahmad F, Ansar M, Mehmood S, et al. A novel missense variant in the PNPLA1 gene underlies congenital ichthyosis in three consanguineous families. J Eur Acad Dermatol Venereol 2016; 30(12):e210-3. doi: 10.1111/jdv.13540.
doi: 10.1111/jdv.13540
|
[7] |
Boyden LM, Craiglow BG, Hu RH, et al. Phenotypic spectrum of autosomal recessive congenital ichthyosis due to PNPLA1 mutation. Br J Dermatol 2017; 177(1):319-22. doi: 10.1111/bjd.15570.
doi: 10.1111/bjd.15570
pmid: 28403545
|
[8] |
Sitek JC, Kulseth MA, Rypdal KB, et al. Whole-exome sequencing for diagnosis of hereditary ichthyosis. J Eur Acad Dermatol Venereol 2018; 32(6):1022-7. doi: 10.1111/jdv.14870.
doi: 10.1111/jdv.14870
pmid: 29444371
|
[9] |
Richards S, Aziz N, Bale S, et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5):405-24. doi: 10.1038/gim.2015.30.
doi: 10.1038/gim.2015.30
pmid: 25741868
|
[10] |
Pinkova B, Buckova H, Borska R, et al. Types of congenital nonsyndromic ichthyoses. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164(4):1-9. doi: 10.5507/bp.2020.050.
doi: 10.5507/bp.2020.050
|
[11] |
Li L, Liu W, Xu Y, et al. Targeted regions sequencing identified four novel PNPLA١ mutations in two Chinese families with autosomal recessive congenital ichthyosis. Mol Genet Genomic Med; 8(2):1-7. doi: 10.1002/mgg3.1076.
doi: 10.1002/mgg3.1076
|
[12] |
Mohamad J, Samuelov L, Malchin N, et al. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp Dermatol 2021; 30(9):1290-7. doi: 10.1111/exd.14345.
doi: 10.1111/exd.14345
pmid: 33786896
|
[13] |
Tetsuya H, Makoto M, Akio K. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. BBA-Mol Cell Biol L 2019;1864 (6):869-79. doi: 10.1016/j.bbalip.2018.09.010.
doi: 10.1016/j.bbalip.2018.09.010
|
[14] |
Akiyama M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J 2021; 288:2119-30. doi: 10.1111/febs.15497.
doi: 10.1111/febs.15497
|
[15] |
Wang B, Gao WY, Liu B, et al. Expert Consensus Statement on Congenital Syndactyly. J Tissue Engineering Reconstructive Surg 2017; 13:303-9. doi: 10.3969/j.issn.1673-0364.2017.06.001.
doi: 10.3969/j.issn.1673-0364.2017.06.001
|