Chinese Medical Sciences Journal ›› 2017, Vol. 32 ›› Issue (4): 253-259.doi: 10.24920/J1001-9294.2017.037
• Review • Previous Articles Next Articles
Wu Wen1, Li Yan2, Xu Dunquan3, *()
Received:
2016-10-24
Published:
2017-12-30
Online:
2017-12-30
Contact:
Xu Dunquan
E-mail:149011273@qq.com
The author proposed that “ROS/Kv/HIF axis” participate in the process of hypoxia-induced pulmonary vasoconstriction and vascular remodeling, and play an important initial role in the development of hypoxia-induced pulmonary hypertension. |
Wu Wen, Li Yan, Xu Dunquan. Role of ROS/Kv/HIF Axis in the Development of Hypoxia-Induced Pulmonary Hypertension[J].Chinese Medical Sciences Journal, 2017, 32(4): 253-259.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1.
Schematic flowchart of the pathway of ROS/ Kv/HIF axis in hypoxia-induced HPH. Hypoxia causes stabilization of HIF-1α, and then leads to the expression of various genes such as VEGF, PDGF and ET-1, all of which participate in HPV and PVR during HPH. Hypoxia induced ROS production affects the balance of K+ and stabilizes the HIF system. VEGF also promotes ROS through the NADPH pathway. ROS increases HIF-1α by inhibiting its degradation. Moreover, NADPH oxidase-derived ROS can inhibit Kv channel current. The imbalance of K+ participates in vasoconstriction and remodeling of pulmonary vessels under hypoxia condition. On the other hand, ROS and HIF promote each other, and form a positive feedback loop, which further disturbs the constriction/dilation of pulmonary vessels and cell proliferation/apoptosis during the pathophysiological progression of HPH. HIF, hypoxia inducible factor; VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth factor; ET, endothelin; HPV, hypoxic pulmonary vasoconstriction; PVR, pulmonary vascular remodeling; ROS, reactive oxygen species; VHL, von Hippel-Lindau; PHD, prolyl hydroxylase domain; HREs, hypoxia response elements; CBP, c-AMP responsive element binding protein; HPH, hypoxic pulmonary hypertension. "
1. | Shah SJ.Pulmonary hypertension. JAMA 2012; 308: 1366-74. doi: 10.1001/jama.2012.12347. |
2. | Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al.Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493-537. doi: 10.1093/eurheartj/ehp297. |
3. | Sylvester JT, Shimoda LA, Aaronson PI, Ward JP.Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92:367-520. doi: 10.1152/physrev.00041.2010. |
4. | Stenmark KR, Fagan KA, Frid MG.Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mech- anisms. Circ Res 2006; 99: 675-91. doi: 10.1161/01.RES. 0000243584.45145.3f. |
5. | Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M.Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21: 134-45. doi: 10.1152/physiol.00053.2005. |
6. | Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, et al.Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 2008; 32:1639-51. doi: 10.1183/09031936.00013908. |
7. | Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ.Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 2006; 290: L2-10. doi: 10.1152/ajplung.00135.2005. |
8. | Jankov RP, Kantores C, Pan J, Belik J.Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2008; 294: L233-45. doi: 10.1152/ajplung.00166.2007. |
9. | Mittal M, Gu XQ, Pak O, Pamenter ME, Haag D, Fuchs DB, et al.Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 2012; 52: 1033-42. doi: 10.1016/j.freeradbiomed.2011.12.004. |
10. | Xu S, Touyz RM.Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol 2006; 22: 947-51. doi: 10.1016/s0828-282x(06)70314-2. |
11. | Wong CM, Bansal G, Pavlickova L, Marcocci L, Suzuki YJ.Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxid Redox Signal 2013; 1: 1789-96. doi: 10.1089/ars.2012.4568. |
12. | Voelkel NF, Bogaard HJ, Al Husseini A, Farkas L, Gomez-Arroyo J, Natarajan R.Antioxidants for the treatment of patients with severe angioproliferative pulmonary hypertension? Antioxid Redox Signal 2013; 18: 1810-7. doi: 10.1089/ars.2012.4828. |
13. | Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, et al.Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006; 99: 970-8. doi: 10.1161/01.RES.0000247068.75808.3f. |
14. | Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M.Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18: 1208-46. doi: 10.1089/ars.2011.4498. |
15. | Freund-Michel V, Guibert C, Dubois M, Courtois A, Marthan R, Savineau JP, et al.Reactive oxygen species as therapeutic targets in pulmonary hypertension. Ther Adv Respir Dis 2013; 7: 175-200. doi: 10.1177/1753465812 472940. |
16. | Semenza GL.Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res 2001; 49: 614-7. doi: 10.1203/00006450-200105000-00002. |
17. | Semenza GL.Oxygen sensing, homeostasis, and disease. N Engl J Med 2011; 365: 537-47. doi: 10.1056/NEJMra 1011165. |
18. | Hagen T.Oxygen versus Reactive Oxygen in the Regulation of HIF-1alpha: The Balance Tips. Biochem Res Int 2012; 436981. doi: 10.1155/2012/436981. |
19. | Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX, et al.The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 2012; 13: 251-7. doi: 10.1038/ embor.2012.9. |
20. | Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, et al.Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 2010; 285: 31277-84. doi: 10.1074/jbc.M110.158485. |
21. | Brown ST, Nurse CA.Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line. Am J Physiol Cell Physiol 2008; 294: C1305-12. doi: 10.1152/ajpcell.00007. 2008. |
22. | Calvani M, Comito G, Giannoni E, Chiarugi P.Time-dependent stabilization of hypoxia inducible factor-1alpha by different intracellular sources of reactive oxygen species. Plos One 2012; 7: e38388. doi: 10.1371/journal.pone. 0038388. |
23. | Prabhakar NR, Semenza GL.Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92: 967-1003. doi: 10.1152/physrev. 00030.2011. |
24. | Semenza GL, Prabhakar NR.The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol 2012; 758: 1-5. doi: 10.1007/978-94-007-4584-1_1. |
25. | Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, et al.Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 2004; 95: 308-18. doi: 10.1161/01.RES.0000137173.42723.fb. |
26. | Ouyang JS, Li YP, Li CY, Cai C, Chen CS, Chen SX, et al.Mitochondrial ROS-K+ channel signaling pathway regulated secretion of human pulmonary artery endothelial cells. Free Radic Res 2012; 46: 1437-45. doi: 10.3109/ 10715762.2012.724532. |
27. | Yasui S, Mawatari K, Morizumi R, Furukawa H, Shimohata T, Harada N,et al.Hydrogen peroxide inhibits insulin-induced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J Med Invest 2012; 59: 36-44. doi: 10.2152/jmi.59.36. |
28. | Wang YX, Zheng YM.Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells. Respir Physiol Neurobiol 2010; 174: 192-200. doi: 10.1016/j.resp.2010.08.008. |
29 | 29.Rathore R, Zheng YM, Niu CF, Furukawa H, Shimohata T, Harada N,et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008; 45: 1223-31. doi: 10.1016/j.freeradbiomed.2008.06.012. |
30. | .Lachmanová V, Hnilicková O, Povýsilová V, Hampl V, Herget J.N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 2005; 77: 175-82. doi: 10.1016/j.lfs.2004.11.027. |
31. | Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD.H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 2011; 108: 566-73. doi: 10.1161/CIRCRESAHA.110.237636. |
32. | Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, et al.H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 2012; 110: 471-80. doi: 10.1161/CIRCRE-SAHA.111.258871. |
33. | Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC.Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 2006; 26: 3514-26. doi: 10.1128/MCB.26.9.3514-3526.2006. |
34. | Rankin EB, Giaccia AJ.Hypoxic control of metastasis. Science 2016; 352(6282): 175-80. doi: 10.1126/science.aaf4405. |
35. | Smith KA, Yuan JX.Hypoxia-inducible factor-1alpha in pulmonary arterial smooth muscle cells and hypoxia- induced pulmonary hypertension. Am J Respir Crit Care Med 2014; 189: 245-6. doi: 10.1164/rccm.201312-2148ED. |
36. | Zhao J, Du F, Shen G, Zheng F, Xu B.The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis 2015; 6: e1600. doi: 10.1038/cddis.2014.565. |
37. | Yang SL, Liu LP, Niu L, Sun YF, Yang XR, Fan J, et al.Downregulation and pro-apoptotic effect of hypoxia- inducible factor 2 alpha in hepatocellular carcinoma. Oncotarget 2016; 7: 34571-81. doi: 10.18632/oncotarget. 8952. |
38. | Huang LE, Gu J, Schau M, Bunn HF.Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95: 7987-92. doi: 10.1073/pnas.95.14.7987. |
39. | Semenza GL.HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88: 1474-80. doi: 10.1152/jappl.2000.88.4.1474. |
40. | Prabhakar NR, Kumar GK, Peng YJ.Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol 2012; 113: 1304-10. doi: 10.1152/japplphysiol.00444.2012. |
41. | Kato M, Staub NC.Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 1966; 19: 426-40. doi: 10.1161/01.res.19.2.426. |
42. | Madden JA, Vadula MS, Kurup VP.Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 1992; 263: L384-93. doi: 10.1152/ajplung.1992.263.3.L384. |
43. | Vadula MS, Kleinman JG, Madden JA.Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol 1993; 265: L591-7. doi: 10.1152/ajplung.1993.265.6.L591. |
44. | Archer S, Michelakis E.The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies. News Physiol Sci 2002; 17: 131-7. doi: 10.1152/nips.01388.2002. |
45. | Hall SM, Hislop AA, Pierce CM, Haworth SG.Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 2000; 23: 194-203. doi: 10.1165/ajrcmb.23.2.3975. |
46. | Mironova GD, Shigaeva MI, Gritsenko EN, Murzaeva SV, Gorbacheva OS, Germanova EL, et al.Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. J Bioenerg Biomembr 2010; 42: 473-81. doi: 10.1007/s10863-010-9316-5. |
47. | Brown ST, Buttigieg J, Nurse CA.Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges. Respir Physiol Neurobiol 2010; 174: 252-8. doi: 10.1016/j.resp. 2010.08.020. |
48. | Dong Q, Zhao N, Xia CK, Du LL, Fu XX, Du YM.Hypoxia induces voltage-gated K+ (Kv) channel expression in pulmonary arterial smooth muscle cells through hypoxia-inducible factor-1 (HIF-1). Bosn J Basic Med Sci 2012; 12: 158-63. doi: 10.17305/bjbms.2012.2463. |
49. | Shin DH, Lin H, Zheng H, Kim KS, Kim JY, Chun YS, et al.HIF-1alpha-mediated upregulation of TASK-2 K+ channels augments Ca2+ signaling in mouse B cells under hypoxia. J Immunol 2014; 193: 4924-33. doi: 10.4049/ jimmunol.1301829. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health & Family Plan Commission of PRC
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1