1. |
DE Waard DD, Morris D, DE Borst GJ, et al. Asym-ptomatic carotid artery stenosis: who should be screened, who should be treated and how should we treat them? J Cardiovasc Surg 2017; 58(1):3-12. doi: 10.23736/S0021-9509.16.09770-6.
|
2. |
Faxon DP, Creager MA, Smith SC, et al. American Heart Association. Atherosclerotic Vascular Disease Conference: Executive summary: Atherosclerotic Vascular Disease Conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2004; 109(21):2595-604. doi: 10.1161/01.CIR.0000128517.52533.DB.
pmid: 15173041
|
3. |
Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001; 89(4):305-16. doi: 10.1161/hh1601.095596.
pmid: 11509446
|
4. |
U.S. Preventive Services Task Force. Screening for carotid artery stenosis: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2007; 147(12):854-9. doi: 10.7326/0003-4819-147-12-200712180-00005.
doi: 10.7326/0003-4819-147-12-200712180-00005
pmid: 18087056
|
5. |
Summaries for patients. Screening for carotid artery stenosis: U.S. Preventive Services Task Force recommendation statement. nn Intern Med 2014; 161(5). doi: 10.7326/P14-9030.
|
6. |
Qureshi AI, Alexandrov AV, Tegeler CH, et al; American Society of Neuroimaging; Society of Vascular and Interventional Neurology. Guidelines for screening of extracranial carotid artery disease: a statement for healthcare professionals from the multidisciplinary practice guidelines committee of the American Society of Neuroimaging; cosponsored by the Society of Vascular and Interventional Neurology. J Neuroimaging 2007; 17(1):19-47. doi: 10.1111/j.1552-6569.2006.00085.x.
doi: 10.1111/j.1552-6569.2006.00085.x
pmid: 17238868
|
7. |
Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the management of patients with extracranial carotid and vertebral artery disease. Stroke 2011; 42(8):e464-540. doi: 10.1161/STR.0b013e3182112cc2. Corrected and republished: Stroke 2011; 42(8):e542. Stroke 2012; 43(8):e80.
doi: 10.1161/STR.0b013e3182112cc2
pmid: 21282493
|
8. |
Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res 2017; 121(9):1092-101. doi: 10.1161/CIRCRESAHA.117.311312.
doi: 10.1161/CIRCRESAHA.117.311312
pmid: 28794054
|
9. |
Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics 2017; 37(2):505-15. doi: 10.1148/rg.2017160130.
doi: 10.1148/rg.2017160130
pmid: 28212054
|
10. |
Li B, Jiao Y, Fu C, et al. Contralateral artery enlargement predicts carotid plaque progression based on machine learning algorithm models in apoE-/- mice. Biomed Eng Online 2016; 15(Suppl 2):146. doi: 10.1186/s12938-016-0265-z.
doi: 10.1186/s12938-016-0265-z
pmid: 28155719
|
11. |
Jacobowitz GR, Rockman CB, Gagne PJ, et al. A model for predicting occult carotid artery stenosis: Screening is justified in a selected population. J Vasc Surg 2003; 38(4):705-9. doi: 10.1016/s0741-5214(03)00730-4.
doi: 10.1016/s0741-5214(03)00730-4
pmid: 14560217
|
12. |
Greco G, Egorova NN, Moskowitz AJ, et al. A model for predicting the risk of carotid artery disease. Ann Surg 2013; 257(6):1168-73. doi: 10.1097/SLA.0b013e31827b9761.
pmid: 23333880
|
13. |
Breiman, Leo. Random forests. Machine learning 2001; 45(1):5-32. Available at https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf. Accessed: December 1, 2019.
doi: 10.1023/A:1010933404324
|
14. |
Wang X, Li W, Song F, et al. Carotid atherosclerosis detected by ultrasonography: A national cross-sectional study. J Am Heart Assoc 2018; 7(8):e008701. doi: 10.1161/JAHA.118.008701.
doi: 10.1161/JAHA.118.008701
pmid: 29622590
|
15. |
Hua Y, Hui PJ, Xing YQ. Chinese stroke vascular ultrasound examination guidelines. Chin J Med Ultrasound (Electronic Edition) 2015; 12(8):599-610. Chinese. doi: 10.3877/cma.j.issn.1672-6448.2015.08.004.
|
16. |
Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007; 23(1):75-80. doi: 10.1159/000097034.
|
17. |
Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: results of a systematic review and analysis. Stroke 2009; 40(10):e573-83. doi: 10.1161/STROKEAHA.109.556068.
doi: 10.1161/STROKEAHA.109.556068
pmid: 19696421
|
18. |
Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning. In: OSDI' 16 proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. USA: Usenix Association; 2016. p. 265-83.
|
19. |
Jiao Y, Chen R, Ke X, et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010; 50(2):589-99. doi: 10.1016/j.neuroimage.2009.12.047.
doi: 10.1016/j.neuroimage.2009.12.047
pmid: 20026220
|
20. |
Qureshi AI, Janardhan V, Bennett SE, et al. Who should be screened for asymptomatic carotid artery stenosis? Experience from the Western New York Stroke Screening Program. J Neuroimaging 2001; 11(2):105-11. doi: 10.1111/j.1552-6569.2001.tb00019.x.
doi: 10.1111/j.1552-6569.2001.tb00019.x
pmid: 11296578
|
21. |
Jauk S, Kramer D, Quehenberger F, et al. Information adapted machine learning models for prediction in clinical workflow. Stud Health Technol Inform 2019; 260:65-72. doi: 10.3233/978-1-61499-971-3-65.
pmid: 31118320
|
22. |
Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 2017; 12(4):e0174944. doi: 10.1371/journal.pone.0174944.
doi: 10.1371/journal.pone.0174944
pmid: 28376093
|
23. |
Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2014; 13:8-17. doi: 10.1016/j.csbj.2014.11.005.
doi: 10.1016/j.csbj.2014.11.005
pmid: 25750696
|
24. |
Hu X, Reaven PD, Saremi A, et al. Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance. EURASIP J Bioinform Syst Biol 2016; 2016(1):14. doi: 10.1186/s13637-016-0049-6.
doi: 10.1186/s13637-016-0049-6
pmid: 27642290
|
25. |
Forsblad J, Gottsater A, Matzsch T, et al. Predictors of carotid endarterectomy in middle-aged individuals. Vasc Med 2001; 6(2):81-5. doi: 10.1177/1358836X0100600203.
pmid: 11530969
|
26. |
Zmysłowski A, Szterk A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16(1):188. doi: 10.1186/s12944-017-0579-2.
doi: 10.1186/s12944-017-0579-2
pmid: 28969682
|
27. |
Wiegman A, Gidding SS, Watts GF, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 2015; 36(36):2425-37. doi: 10.1093/eurheartj/ehv157.
doi: 10.1093/eurheartj/ehv157
pmid: 26009596
|
28. |
Defesche JC, Gidding SS, Harada-Shiba M, et al. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017; 3:17093. doi: 10.1038/nrdp.2017.93.
pmid: 29219151
|
29. |
Yin J, Yu C, Liu H, et al. A model to predict unstable carotid plaques in population with high risk of stroke. BMC Cardiovasc Disord 2020; 20(1):164. doi: 10.1186/s12872-020-01450-z.
doi: 10.1186/s12872-020-01450-z
pmid: 32264828
|