Chinese Medical Sciences Journal ›› 2021, Vol. 36 ›› Issue (3): 187-195.doi: 10.24920/003985
所属专题: 人工智能与精准肿瘤学
收稿日期:
2021-08-19
接受日期:
2021-09-14
出版日期:
2021-09-30
发布日期:
2021-09-23
通讯作者:
唐磊
E-mail:terrytang78@163.com
Received:
2021-08-19
Accepted:
2021-09-14
Published:
2021-09-30
Online:
2021-09-23
Contact:
Lei Tang
E-mail:terrytang78@163.com
摘要:
抗肿瘤药物的快速发展改善了恶性肿瘤患者预后。以CT、MRI和PET为代表的影像学手段作为重要的终点替代指标,在新药临床试验中发挥着越来越重要的作用。但因抗肿瘤药物作用靶点、应用线数等不同,治疗后影像学征象变化的个体差异较大,单用RECIST标准已无法满足个体化精准评效的需求。影像组学作为一种依托于新兴计算机技术的特征提取和模型构建手段,有望协助临床进行抗肿瘤药物治疗疗效的精准评估。本文介绍了影像组学的基本概念,回顾了影像组学在抗肿瘤药物疗效评价方面的最新进展,深入分析影像组学在预测肿瘤分子标志物、评价治疗疗效和预后预测方面的应用潜力,探讨了目前影像组学在抗肿瘤药物临床研究中存在的主要问题和未来发展方向。
Jiazheng Li, Lei Tang. Radiomics in Antineoplastic Agents Development: Application and Challenge in Response Evaluation[J].Chinese Medical Sciences Journal, 2021, 36(3): 187-195.
"
Author | Journal | Publication Year | Study Type | Cancer | Sample Size | Image Type | Orientation | Segmentation | Radiomics Features | Algorithms | |
---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | ||||||||||
Sun R[ | Lancet Oncol | 2018 | Retrospective; Multicenter | Pancancer | 135 | 356 | CE-CT | Estimate tumor CD8 cell count | Primary lesion, biggest lesion, target lesions; a peripheral ring | First-, second-order features, and volumes features | linear elastic-net model |
Jiang Y[ | Ann Oncol | 2020 | Retrospective; Multicenter | Gastric cancer | 262 | 1516 | Abdomen portal venous phase CE-CT | Predict tumor immune status | Primary tumor; a peripheral ring | First-, second-, and higher order features and shape features | LASSO method |
Jiang Y[ | Lancet Digit Health | 2021 | Retrospective; Multicenter | Gastric cancer | 321 | 1888 | Abdomen portal venous phase CE-CT | Assess tumor stroma microenvironment | primary tumor | Deep learning features | Attention U-net for deformable image augmentation and deep ResNet |
Mu W[ | Nat Commun | 2020 | Retrospective; Multicenter | NSCLC | 429 | 468 | 18F-FDG PET/CT | Define EGFR mutation status | Primary tumor; a peripheral ring | Deep learning features | 2D small-residual-convolutional-network |
Rossi G[ | Cancer Res | 2021 | Retrospective; Multicenter | NSCLC | 109 | 61 | Chest CT without contrast | Define EGFR mutation status | Tumor corresponding to the biological sample | Shape and textural features | Support Vector Machine |
Tian P[ | Theranostics | 2021 | Retrospective | NSCLC | 750 | 283 | CT | Predict PD-L1 expression | Primary tumor | Deep learning features | Deep learning network |
Shi R[ | Am J Cancer Res | 2020 | Retrospective; Multicenter | Colo- rectal cancer | 124 | 35 | Abdomen portal venous phase CE-CT | Distinguish patients with RAS or BRAF mutation | Metastatic liver lesions | First-order features, shape-based features, and textural features | ANN method |
Trebeschi S[ | Ann Oncol | 2019 | Retrospective; Multicenter | NSCLC; Melanoma | 203 | 301 | Chest CT or chest-abdomen CE-CT | Predict lesion’s progression and patient’s OS before immunotherapy | Lesions with diameter > 5 mm | Laplacian of Gaussian filters, wavelets decompositions, and non-linearities features | Random forest |
Vaidya P[ | Lancet Digit Health | 2020 | Retrospective; Multicenter | NSCLC | 329 | 196 | Chest CT with or without contrast | Predict survival after adjuvant chemotherapy | Target nodule; a peripheral ring | Gabor, Haralick, Laws, Laplace, and Collage feature | LASSO method |
Vaidya P[ | J Immunother Cancer | 2020 | Retrospective | NSCLC | 30 | 79 | CT with or without contrast | Distinguish hyperprogression from response patterns to immunotherapy | All target lesions; a peripheral ring | Gabor, Haralick, Laws, Laplace, and Collage feature | Random forest |
Dercle L[ | J Natl Cancer Inst | 2020 | Retrospective; Multicenter | Colo- rectal cancer | 439 | 229 | Abdomen portal venous phase CE-CT | Predict tumor sensitivity to anti- EGFR treatment | Metastatic liver lesions | Radiomics features*, deep learning features | Random forest |
Dercle L[ | Clin Cancer Res | 2020 | Retrospective; Multicenter | NSCLC | 72 | 20 | Chest CT | Predict sensitivity to targeted- treatment | Largest measurable lung lesion | Radiomics features* | Random forest |
Basler L[ | Clin Cancer Res | 2020 | Retrospective | Melanoma | 112 | 112# | 18F-FDG PET/CT | Distinguish hyperprogression in patients treated with immunotherapy | All lesions | Shape, intensity, and texture features | Logistic regression and regularized with L2 penalty |
Xu Y[ | Clin Cancer Res | 2019 | Retrospective; Multicenter | NSCLC | 107 | 161 | Chest CT | Predict OS for patients with definitive RT and chemotherapy | Manually defined the seed points of tumor as input | Deep learning features | CNN and RNN |
Song J[ | Clin Cancer Res | 2018 | Retrospective; Multicenter | NSCLC | 1032 | 253 | Chest CE-CT | Discriminate patients with rapid and slow progression to EGFR-TKI therapy | Primary tumors | Intensity, shape, and texture features | Cox regression model with LASSO penalty |
Song J[ | JAMA Netw Open | 2020 | Retrospective; Multicenter | NSCLC | 145 | 320 | Chest CT with or without contrast | Predict survival for patients treated with TKI therapy | Whole CT images used as the input | 120-dimensional semantic features | LASSO, Cox proportional hazards regression |
Zhang N[ | Theranostics | 2020 | Retrospective | NSCLC | 41 | 41 | 18F-FDG PET/CT | Predict treatment response to RT with concurrent chemotherapy | Primary tumors; involved lymph nodes | Morphology, boundary sharpness, intensity, and gray-level co-occurrence matrix features | LASSO method |
Jiang Y[ | Ebiomedicine | 2018 | Retrospective; Multicenter | Gastric cancer | 228 | 1363 | Abdomen portal venous phase CE-CT | Predict survival when patients receive adjuvant chemotherapy | Primary tumors | Gray-level histogram, co-occurrence matrix, run-length matrix, absolute gradient, autoregressive model, wavelet transform features | LASSO method |
"
Section | Item No. | CONSORT-AI item extensions |
---|---|---|
Title and Abstract | ||
Title | 1a,b(i) | Indicate that the intervention involves artificial intelligence/machine learning in the title and/or abstract and specify the type of model. |
1a,b(ii) | State the intended use of the AI intervention within the trial in the title and/ or abstract. | |
Introduction | ||
Background and objectives | 2a(i) | Explain the intended use for the AI intervention in the context of the clinical pathway, including its purpose and its intended users (e.g., healthcare professionals, patients, public). |
Methods | ||
Participates | 4a(i) | State the inclusion and exclusion criteria at the level of participants. |
4a(ii) | State the inclusion and exclusion criteria at the level of the input data. | |
4b | Describe how the AI intervention was integrated into the trial setting, including any onsite or offsite requirements. | |
Interventions | 5(i) | State which version of the AI algorithm was used. |
5(ii) | Describe how the input data were acquired and selected for the AI intervention. | |
5(iii) | Describe how poor quality or unavailable input data were assessed and handled. | |
5(iv) | Specify whether there was human-AI interaction in the handling of the input data, and what level of expertise was required for users. | |
5(v) | Specify the output of the AI intervention. | |
5(vi) | Explain how the AI intervention’s outputs contributed to decision-making or other elements of clinical practice. | |
Results | ||
Harms | 19 | Describe results of any analysis of performance errors and how errors were identified, where applicable. If no such analysis was planned or done, justify why not. |
Other information | ||
Funding | 25 | State whether and how the AI intervention and/or its code can be accessed, including any restrictions to access or re-use. |
1. |
Smith BD, Kaufman MD, Lu WP, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistantKIT and PDGFRA variants. Cancer Cell 2019; 35(5):738-51.e9. doi: 10.1016/j.ccell.2019.04.006.
doi: 10.1016/j.ccell.2019.04.006 |
2. |
Zhang X, Liang H, Li Z, et al. Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): an open-label, superiority and non-inferiority, phase 3 randomised controlled trial. Lancet Oncol 2021; 22(8):1081-92. doi: 10.1016/S1470-2045(21)00297-7.
doi: 10.1016/S1470-2045(21)00297-7 |
3. |
Gong J, Chehrazi-Raffle A, Reddi S, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6(1):8. doi: 10.1186/s40425-018-0316-z.
doi: 10.1186/s40425-018-0316-z pmid: 29357948 |
4. | The Center for Drug Evaluation, National Medical Products Administration, China. The principles and procedures of clinical trial imaging endpoint process standards for antineoplastic agents. Available from: https://www.cde.org.cn/main/att/download/cebb08a90ca9af65d0bf1fa06235039e. Released January 14, 2021; accessed August 15, 2021. |
5. |
Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 2007; 25(13):1753-9. doi: 10.1200/JCO.2006.07.3049.
doi: 10.1200/JCO.2006.07.3049 |
6. |
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69(2):127-57. doi: 10.3322/caac.21552.
doi: 10.3322/caac.21552 |
7. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278(2):563-77. doi: 10.1148/radiol.2015151169.
doi: 10.1148/radiol.2015151169 pmid: 26579733 |
8. |
Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics 2017; 37(2):505-5. doi: 10.1148/rg.2017160130.
doi: 10.1148/rg.2017160130 pmid: 28212054 |
9. |
Li Y, Cheng Z, Gevaert O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer. Chin J Cancer Res 2020; 32(1):62-71. doi: 10.21147/j.issn.1000-9604.2020.01.08.
doi: 10.21147/j.issn.1000-9604.2020.01.08 |
10. |
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1):24-9. doi: 10.1038/s41591-018-0316-z.
doi: 10.1038/s41591-018-0316-z pmid: 30617335 |
11. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553):436-44. doi: 10.1038/nature14539.
doi: 10.1038/nature14539 |
12. |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8):500-10. doi: 10.1038/s41568-018-0016-5.
doi: 10.1038/s41568-018-0016-5 |
13. |
Lee IS, Park YS, Lee JH, et al. Pathologic discordance of differentiation between endoscopic biopsy and postoperative specimen in mucosal gastric adenocarcinomas. Ann Surg Oncol 2013; 20(13):4231-7. doi: 10.1245/s10434-013-3196-y.
doi: 10.1245/s10434-013-3196-y |
14. |
Xu F, Ma X, Wang Y, et al. CT texture analysis can be a potential tool to differentiate gastrointestinal stromal tumors without KIT exon 11 mutation. Eur J Radiol 2018; 107:90-7. doi: 10.1016/j.ejrad.2018.07.025.
doi: 10.1016/j.ejrad.2018.07.025 |
15. |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19(9):1180-91. doi: 10.1016/S1470-2045(18)30413-3.
doi: 10.1016/S1470-2045(18)30413-3 |
16. |
Jiang Y, Wang H, Wu J, et al. Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann Oncol 2020; 31(6):760-8. doi: 10.1016/j.annonc.2020.03.295.
doi: 10.1016/j.annonc.2020.03.295 |
17. |
Jiang Y, Liang X, Han Z, et al. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. Lancet Digit Health 2021; 3(6):e371-e382. doi: 10.1016/S2589-7500(21)00065-0.
doi: 10.1016/S2589-7500(21)00065-0 |
18. |
Mu W, Jiang L, Zhang J, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun 2020; 11(1):5228. doi: 10.1038/s41467-020-19116-x.
doi: 10.1038/s41467-020-19116-x |
19. |
Rossi G, Barabino E, Fedeli A, et al. Radiomic detection of EGFR mutations in NSCLC. Cancer Res 2021; 81(3):724-31. doi: 10.1158/0008-5472.CAN-20-0999.
doi: 10.1158/0008-5472.CAN-20-0999 |
20. |
Tian P, He B, Mu W, et al. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics 2021; 11(5):2098-107. doi: 10.7150/thno.48027.
doi: 10.7150/thno.48027 |
21. | Shi R, Chen W, Yang B, et al. Prediction of KRAS, NRAS and BRAF status in colorectal cancer patients with liver metastasis using a deep artificial neural network based on radiomics and semantic features. Am J Cancer Res 2020; 10(12):4513-26. |
22. |
Trebeschi S, Drago SG, Birkbak NJ, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol 2019; 30(6):998-1004. doi: 10.1093/annonc/mdz108.
doi: S0923-7534(19)31202-5 pmid: 30895304 |
23. |
Vaidya P, Bera K, Gupta A, et al. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in Stage I, II resectable Non-Small Cell Lung Cancer: a retrospective multi-cohort study for outcome prediction. Lancet Digit Health 2020; 2(3):e116-e128. doi: 10.1016/s2589-7500(20)30002-9.
doi: 10.1016/s2589-7500(20)30002-9 |
24. |
Vaidya P, Bera K, Patil PD, et al. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer 2020; 8(2):e001343. doi: 10.1136/jitc-2020-001343.
doi: 10.1136/jitc-2020-001343 |
25. |
Dercle L, Lu L, Schwartz LH, et al. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway. J Natl Cancer Inst 2020; 112(9):902-12. doi: 10.1093/jnci/djaa017.
doi: 10.1093/jnci/djaa017 |
26. |
Dercle L, Fronheiser M, Lu L, et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res 2020; 26(9):2151-62. doi: 10.1158/1078-0432.CCR-19-2942.
doi: 10.1158/1078-0432.CCR-19-2942 |
27. |
Basler L, Gabryś HS, Hogan SA, et al. Radiomics, tumor volume, and blood biomarkers for early prediction of pseudoprogression in patients with metastatic melanoma treated with immune checkpoint inhibition. Clin Cancer Res 2020; 26(16):4414-25. doi: 10.1158/1078-0432.CCR-20-0020.
doi: 10.1158/1078-0432.CCR-20-0020 pmid: 32253232 |
28. |
Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11):3266-75. doi: 10.1158/1078-0432.CCR-18-2495.
doi: 10.1158/1078-0432.CCR-18-2495 |
29. |
Song J, Shi J, Dong D, et al. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res 2018; 24(15):3583-92. doi: 10.1158/1078-0432.CCR-17-2507.
doi: 10.1158/1078-0432.CCR-17-2507 |
30. |
Song J, Wang L, Ng NN, et al. Development and validation of a machine learning model to explore tyrosine kinase inhibitor response in patients with stage IV EGFR variant-positive non-small cell lung cancer. JAMA Netw Open 2020; 3(12):e2030442. doi: 10.1001/jamanetworkopen.2020.30442.
doi: 10.1001/jamanetworkopen.2020.30442 |
31. |
Zhang N, Liang R, Gensheimer MF, et al. Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer. Theranostics 2020; 10(25):11707-18. doi: 10.7150/thno.50565.
doi: 10.7150/thno.50565 |
32. |
Jiang Y, Chen C, Xie J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 2018; 36:171-82. doi: 10.1016/j.ebiom.2018.09.007.
doi: 10.1016/j.ebiom.2018.09.007 |
33. |
Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1):39-51. doi: 10.1056/NEJMra043186.
doi: 10.1056/NEJMra043186 |
34. |
Li B, Jiang Y, Li G, et al. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight 2020; 5(9):e136570. doi: 10.1172/jci.insight.136570.
doi: 10.1172/jci.insight.136570 |
35. |
Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 2016; 22(8):1865-74. doi: 10.1158/1078-0432.CCR-15-1507.
doi: 10.1158/1078-0432.CCR-15-1507 |
36. |
Nishino M, Hatabu H, Hodi FS. Imaging of cancer immunotherapy: current approaches and future directions. Radiology 2019; 290(1):9-22. doi: 10.1148/radiol.2018181349.
doi: 10.1148/radiol.2018181349 pmid: 30457485 |
37. |
Park JE, Kim D, Kim HS, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 2020; 30(1):523-36. doi: 10.1007/s00330-019-06360-z.
doi: 10.1007/s00330-019-06360-z pmid: 31350588 |
38. |
An C, Park YW, Ahn SS, et al. Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results. PLoS One 2021; 16(8):e0256152. doi: 10.1371/journal.pone.0256152.
doi: 10.1371/journal.pone.0256152 |
39. |
Wang Y, Jin ZY. Radiomics approaches in gastric cancer: a frontier in clinical decision making. Chin Med J (Engl) 2019; 132(16):1983-9. doi: 10.1097/CM9.0000000000000360.
doi: 10.1097/CM9.0000000000000360 |
40. |
Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 2016; 6:23428. doi: 10.1038/srep23428.
doi: 10.1038/srep23428 |
41. |
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019; 380(14):1347-58. doi: 10.1056/NEJMra1814259.
doi: 10.1056/NEJMra1814259 |
42. |
Zhang Y, Li H, Du J, et al. 3D Multi-attention guided multi-task learning network for automatic gastric tumor segmentation and lymph node classification. IEEE Trans Med Imaging 2021; 40(6):1618-31. doi: 10.1109/TMI.2021.3062902.
doi: 10.1109/TMI.2021.3062902 |
43. |
Aganj I, Harisinghani MG, Weissleder R, et al. Unsupervised medical image segmentation based on the local center of mass. Sci Rep 2018; 8(1):13012. doi: 10.1038/s41598-018-31333-5.
doi: 10.1038/s41598-018-31333-5 pmid: 30158534 |
44. |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14(12):749-62. doi: 10.1038/nrclinonc.2017.141.
doi: 10.1038/nrclinonc.2017.141 |
45. |
Liu X, Cruz Rivera S, Moher D; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 2020; 26(9):1364-74. doi: 10.1038/s41591-020-1034-x.
doi: 10.1038/s41591-020-1034-x |
[1] | 王梓阳, 兰雨姗, 徐子犊, 顾耀文, 李姣. 基于机器学习的脓毒症死亡率预测模型对比研究[J]. Chinese Medical Sciences Journal, 2022, 37(3): 201-209. |
[2] | 巴伟, 王书浩, 刘灿城, 王跃峰, 石怀银, 宋志刚. 基于深度学习算法的胃炎组织病理学诊断系统[J]. Chinese Medical Sciences Journal, 2021, 36(3): 204-209. |
[3] | 陈旭, 霍晓菲, 吴哲, 陆菁菁. 人工智能在卵巢癌医学影像中的应用进展[J]. Chinese Medical Sciences Journal, 2021, 36(3): 196-203. |
[4] | 杨万水, 蒋涵羽, 刘超, 魏靖伟, 周宇, 宫鹏云, 宋彬, 田捷. 多组学技术及其在肝细胞癌中的临床应用:当前进展与未来机遇[J]. Chinese Medical Sciences Journal, 2021, 36(3): 173-186. |
[5] | 徐潋滟, 闫轲, 吕乐, 张伟宏, 陈旭, 霍晓菲, 陆菁菁. CT图像中多器官占位性病变的计算机辅助检测模型的外部和内部验证[J]. Chinese Medical Sciences Journal, 2021, 36(3): 210-217. |
[6] | 李大胜,王大为,王娜娜,徐海旺,黄河,董建平,夏晨. 北京首例由输入病例导致社区感染的新型冠状病毒肺炎患者:深度学习CT辅助诊断的作用[J]. Chinese Medical Sciences Journal, 2021, 36(1): 66-71. |
[7] | 尹俊雄, 余诚, 魏丽霞, 余传勇, 刘红星, 杜明洋, 孙丰, 王崇骏, 王小姗. 基于机器学习的脑卒中高危人群无症状性颈动脉狭窄的检测研究[J]. Chinese Medical Sciences Journal, 2020, 35(4): 297-305. |
[8] | 李培林, 袁贞明, 涂文博, 俞凯, 芦东昕. 基于深度学习的电子病历中医疗知识抽取与分析[J]. Chinese Medical Sciences Journal, 2019, 34(2): 133-139. |
[9] | 史颖欢,王乾. 人工智能赋能医学影像的现状与前景[J]. Chinese Medical Sciences Journal, 2019, 34(2): 71-75. |
[10] | 关健. 健康和医学领域的人工智能:期许、伦理挑战和治理[J]. Chinese Medical Sciences Journal, 2019, 34(2): 76-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1