Chinese Medical Sciences Journal ›› 2018, Vol. 33 ›› Issue (3): 174-182.doi: 10.24920/21804
• Review • Previous Articles Next Articles
Published:
2018-09-30
Online:
2018-05-28
Contact:
Ni Anping
E-mail:niap@pumch.cn
Programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) is a significant immune checkpoint, and the dysfunction of this axis contributes to tumor metastasis and immune escape. The underlying mechanisms provides potential targets for tumor treatment. At present, the combination therapy of PD-1/PD-L1 monoclonal antibodies plus small molecular inhibitors has achieved good outcomes in tumor treatment. |
Ni Jieming, Ni Anping. Landscape of PD-1/PD-L1 Regulation and Targeted Immunotherapy[J].Chinese Medical Sciences Journal, 2018, 33(3): 174-182.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1.
The regulation network of PD-1/PD-L1. PI3K/Akt/mTOR and MAPK signal pathway induces PD-1/PD-L1 expression, and transcriptional factors HIF, PTEN, p53, CDK5, BRD4, STAT etc modulate PD-1/PD-L1 expression. PD-1/PD-L1 level is also regulated via epigenetical and post-translational manner. GSK: glycogen synthase kinase; HRE: hypoxia response element; MMP: matrix metalloprotein."
1. |
Sheppard KA, Fitz LJ, Lee JM , et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3 signalosome and downstream signaling to PKC theta. FEBS Letters 2004; 574(1-3):37-41. doi: 10.1016/j.febslet.2004.07.083.
doi: 10.1016/j.febslet.2004.07.083 |
2. |
Zhang B, Yu W, Feng X , et al. Prognostic significance of PD-L1 expression on tumor cells and tumor-infiltrating mononuclear cells in upper tract urothelial carcinoma. Med Oncol 2017; 34(5):1-9. doi: 10.1007/s12032-017-0941-2.
doi: 10.1007/s12032-017-0941-2 |
3. |
Waldmann TA . The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3(3):219-27. doi: 10.1158/2326-6066.CIR-15-0009.
doi: 10.1158/2326-6066.CIR-15-0009 |
4. |
Smeltzer JP, Jones JM, Ziesmer SC , et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res 2014; 20(11):2862-72. doi: 10.1158/1078-0432.CCR-13-2367.
doi: 10.1158/1078-0432.CCR-13-2367 |
5. |
Kubo S, Yamada T, Osawa Y , et al. Cytosine-phosphate-guanosine-DNA induces CD274 expression in human B cells and suppresses T helper type 2 cytokine production in pollen antigen-stimulated CD4-positive cells. Clin Exp Immunol 2012; 169(1):1-9. doi: 10.1111/j.1365-2249.2012.04585.x.
doi: 10.1111/j.1365-2249.2012.04585.x |
6. |
Bai J, Gao Z, Li X , et al. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 2017; 8(66):110693-707. doi: 10.18632/oncotarget.22690.
doi: 10.18632/oncotarget.22690 pmid: 5746415 |
7. |
Chen J, Jiang CC, Jin L , et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2016; 27(3):409-16. doi: 10.1093/annonc/mdv615.
doi: 10.1093/annonc/mdv615 |
8. |
Dezutter-Dambuyant C, Durand I, Alberti L , et al. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology 2015; 5(3):e1091146. doi: 10.1080/2162402X.2015.1091146.
doi: 10.1080/2162402X.2015.1091146 |
9. |
Yang L, Huang F, Mei J , et al. Posttranscriptional control of PD-L1 expression by 17β-estradiol via PI3K/Akt signaling pathway in ERα-positive cancer cell lines. Int J Gynecol Cancer 2017; 27(2):196-205. doi: 10.1097/IGC.0000000000000875.
doi: 10.1097/IGC.0000000000000875 |
10. |
Ok CY, Young KH . Targeting the programmed death-1 pathway in lymphoid neoplasms. Cancer Treat Rev 2017; 54(3):99-109. doi: 10.1016/j.ctrv.2017.01.009.
doi: 10.1016/j.ctrv.2017.01.009 pmid: 28242522 |
11. |
Sai J, Owens P, Novitskiy SV , et al. PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses. Clin Cancer Res 2017; 23(13):3371-84. doi: 10.1158/1078-0432.CCR-16-2142.
doi: 10.1158/1078-0432.CCR-16-2142 |
12. |
Ma CX, Sanchez C, Gao F , et al. A phase I study of the AKT inhibitor MK-2206 in combination with hormonal therapy in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clin Cancer Res 2016; 22(11):2650-8. doi: 10.1158/1078-0432.CCR-15-2160.
doi: 10.1158/1078-0432.CCR-15-2160 |
13. |
Shayan G, Srivastava R, Li J , et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 2017; 6(1):e1261779. doi: 10.1080/2162402X.2016.1261779.
doi: 10.1080/2162402X.2016.1261779 |
14. |
Busaidy NL , LoRusso P, Lawhorn K, et al. The prevalence and impact of hyperglycemia and hyperlipidemia in patients with advanced cancer receiving combination treatment with the mammalian target of rapamycin inhibitor temsirolimus and insulin growth factor-receptor antibody cixutumumab. Oncologist 2015; 20(7):737-41. doi: 10.1634/theoncologist.2015-0065.
doi: 10.1634/theoncologist.2015-0065 |
15. |
Cannon MJ, Goyne HE, Stone PJ , et al. Modulation of p38 MAPK signaling enhances dendritic cell activation of human CD4+ Th17 responses to ovarian tumor antigen. Cancer Immunol Immunother 2013; 62(5):839-49. doi: 10.1007/s00262-013-1391-0.
doi: 10.1007/s00262-013-1391-0 |
16. |
Hugo W, Zaretsky JM, Sun L , et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016; 165(1):35-44. doi: 10.1016/j.cell.2016.02.065.
doi: 10.1016/j.cell.2016.02.065 pmid: 26997480 |
17. |
Bally AP, Lu P, Tang Y , et al. NF-kappaB regulates PD-1 expression in macrophages. J Immunol 2015; 194(9):4545-54. doi: 10.4049/jimmunol.1402550.
doi: 10.4049/jimmunol.1402550 |
18. |
Lin K, Cheng J, Yang T , et al. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun 2015; 463(1-2):95-101. doi: 10.1016/j.bbrc.2015.05.030.
doi: 10.1016/j.bbrc.2015.05.030 pmid: 25998384 |
19. |
Fraser SP, Hemsley F, Djamgoz MB . Caffeic acid phenethyl ester: inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol 2016; 71(2):111-8. doi: 10.1016/j.biocel.2015.12.012.
doi: 10.1016/j.biocel.2015.12.012 |
20. |
Tanaka T, Kutomi G, Kajiwara T , et al. Cancer-associated oxidoreductase ERO1-alpha promotes immune escape through up-regulation of PD-L1 in human breast cancer. Oncotarget 2017; 8(15):24706-18. doi: 10.18632/oncotarget.14960.
doi: 10.18632/oncotarget.14960 |
21. |
Naik R, Han S, Lee K . Chemical biology approach for the development of hypoxia inducible factor (HIF) inhibitor LW6 as a potential anticancer agent. Arch Pharm Res 2015; 38(9):1563-74. doi: 10.1007/s12272-015-0632-5.
doi: 10.1007/s12272-015-0632-5 |
22. |
Barsoum IB, Smallwood CA, Siemens DR , et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74(3):665-74. doi: 10.1158/0008-5472.CAN-13-0992.
doi: 10.1158/0008-5472.CAN-13-0992 pmid: 24336068 |
23. |
Chiker S, Pennaneach V, Loew D , et al. Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients. Cell Cycle 2015; 14(19):3066-78. doi: 10.1080/15384101.2015.1078020.
doi: 10.1080/15384101.2015.1078020 |
24. |
Eggers JP, Grandgenett PM, Collisson EC , et al. Cyclin-dependent kinase 5 is amplified and overexpressed in pancreatic cancer and activated by mutant K-Ras. Clin Cancer Res 2011; 17(19):6140-50. doi: 10.1158/1078-0432.CCR-10-2288.
doi: 10.1158/1078-0432.CCR-10-2288 |
25. |
Patsoukis N, Li L, Sari D , et al. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 2013; 33(16):3091-8. doi: 10.1128/MCB.00319-13.
doi: 10.1128/MCB.00319-13 |
26. |
Cortez MA, Ivan C, Valdecanas D , et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 2015; 108(1). pii: djv303. doi: 10.1093/jnci/djv303.
doi: 10.1093/jnci/djv303 pmid: 4862407 |
27. |
Liu W, Ma Q, Wong K , et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2013; 155(7):1581-95. doi: 10.1016/j.cell.2013.10.056.
doi: 10.1016/j.cell.2013.10.056 pmid: 24360279 |
28. |
Melaiu O, Mina M, Chierici M , et al. PD-L1 is a therapeutic target of the bromodomain inhibitor JQ1 and, combined with HLA class I, a promising prognostic biomarker in neuroblastoma. Clin Cancer Res 2017; 23(15):4462-72. doi: 10.1158/1078-0432.CCR-16-2601.
doi: 10.1158/1078-0432.CCR-16-2601 |
29. |
Zhu H, Bengsch F, Svoronos N , et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 2016; 16(11):2829-37. doi: 10.1016/j.celrep.2016.08.032.
doi: 10.1016/j.celrep.2016.08.032 pmid: 27626654 |
30. |
Lu C, Talukder A, Savage NM , et al. JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 2017; 6(3):e1291106. doi: 10.1080/2162402X.2017.1291106.
doi: 10.1080/2162402X.2017.1291106 |
31. |
Yao A, Liu F, Chen K , et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics 2014; 11(3):636-50. doi: 10.1007/s13311-013-0254-x.
doi: 10.1007/s13311-013-0254-x |
32. |
Doi T, Ishikawa T, Okayama T , et al. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 2017; 37(3):1545-54. doi: 10.3892/or.2017.5399.
doi: 10.3892/or.2017.5399 |
33. |
Borghaei H, Paz-Ares L, Horn L . Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373(2):1627-39. doi: 10.1056/NEJMoa1507643.
doi: 10.1056/NEJMoa1507643 |
34. |
Robert C, Thomas L, Bondarenko I , et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364(26):2517-26. doi: 10.1056/NEJMoa1104621.
doi: 10.1056/NEJMoa1104621 |
35. |
Gibney GT, Kudchadkar RR , DeConti RC, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res 2015; 21(4):712-20. doi: 10.1158/1078-0432.CCR-14-2468.
doi: 10.1158/1078-0432.CCR-14-2468 |
36. |
Zak KM, Grudnik P, Magiera K , et al. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 2017; 25(8):1163-74. doi: 10.1016/j.str.2017.06.011.
doi: 10.1016/j.str.2017.06.011 pmid: 28768162 |
37. |
Taylor A, Harker JA, Chanthong K , et al. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity 2016; 44(2):274-86. doi: 10.1016/j.immuni.2016.01.018.
doi: 10.1016/j.immuni.2016.01.018 |
38. |
Mahoney KM, Freeman GJ , McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015; 37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018.
doi: 10.1016/j.clinthera.2015.02.018 pmid: 25823918 |
[1] | Zhao Zhimei, Liu Shichao, Xu Xiajuan, Zhang Zhongfa, Nie Keke, Ji Youxin. Treatment of Skin Reaction Induced by Nivolumab Combined with Radiotherapy in Non-small Cell Lung Cancer: A Case Report [J]. Chinese Medical Sciences Journal, 2018, 33(3): 183-187. |
[2] | Jing-wen Cao, Lu Zhang, Ye Li, Qing Yang, Wen-hua Fu, Xiao-chen Wang, Wen-long Huang. Trends and Prospects of Stem Cell Research in China [J]. Chinese Medical Sciences Journal, 2016, 31(2): 116-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1