Chinese Medical Sciences Journal ›› 2019, Vol. 34 ›› Issue (2): 110-119.doi: 10.24920/003576
• Review • Previous Articles Next Articles
Sun Liang1, Zhang Li2, Zhang Daoqiang1, *()
Received:
2019-02-27
Accepted:
2019-04-28
Published:
2019-05-14
Online:
2019-05-16
Contact:
Zhang Daoqiang
E-mail:dqzhang@nuaa.edu.cn
Multi-atlas based methods for brain MR image segmentation were systematically reviewed in this review article. The author proposed that incorporating the anatomical prior into the end-to-end deep learning architectures, for brain ROI segmentation is an important direction in the future. |
Sun Liang,Zhang Li,Zhang Daoqiang. Multi-Atlas Based Methods in Brain MR Image Segmentation[J].Chinese Medical Sciences Journal, 2019, 34(2): 110-119.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The performance assessment results of the state-of-the-art methods on ADNI dataset for hippocampus segmentation"
Methods | Subjects (n) | DR (%) | ASD | References No |
---|---|---|---|---|
LWJoint | 139 | 89.7(88.8) | - | 25 |
DDLS | 202 | 87.2 | - | 28 |
HLF | 66 | 88.5 | 0.334 | 32 |
Progressive SPBL | 64 | 88.3 | - | 35 |
DSPBL | 66 | 88.3 | 0.40 | 36 |
NL1 | 135 | 86.45 | - | 38 |
[1] |
Devanand DP, Pradhaban G, Liu X , et al. Hippocampal and entorhinal atrophy in mild cognitive impairment - Prediction of Alzheimer disease. Neurology 2007; 68(11):828-36. doi:
doi: 10.1212/01.wnl.0000256697.20968.d7 |
[2] |
Zhang DQ, Wang YP, Zhou LP , et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 2011; 55(3):856-67. doi:
doi: 10.1016/j.neuroimage.2011.01.008 |
[3] |
Liu MX, Zhang DQ, Shen DG . Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging 2016; 35(6):1463-74. doi:
doi: 10.1109/TMI.2016.2515021 |
[4] |
Jie B, Liu MX, Zhang DQ , et al. Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans Image Process 2018; 27(5):2340-53. doi:
doi: 10.1109/TIP.2018.2799706 |
[5] |
Liu MX, Zhang J, Adeli E , et al. Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal 2018; 43:157-68. doi:
doi: 10.1016/j.media.2017.10.005 |
[6] |
Jenkinson M, Smith S . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5(2):143-56. doi:
doi: 10.1016/S1361-8415(01)00036-6 |
[7] |
Langerak TR, van der Heide UA, Kotte ANTJ , et al. Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation. Comput Vision Image Understand 2015; 130:71-9. doi:
doi: 10.1016/j.cviu.2014.09.004 |
[8] |
Smith SM, Jenkinson M, Woolrich MW , et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23:S208-S19. doi:
doi: 10.1016/j.neuroimage.2004.07.051 |
[9] |
Avants BB, Epstein CL, Grossman M , et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12(1):26-41. doi:
doi: 10.1016/j.media.2007.06.004 |
[10] |
Vercauteren T, Pennec X, Perchant A , et al. Diffeomorphic demons: Efficient non-parametric image registration. Neuroimage 2009; 45(1):S61-S72. doi:
doi: 10.1016/j.neuroimage.2008.10.040 |
[11] |
Thirion JP . Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 1998; 2(3):243-60. doi:
doi: 10.1016/S1361-8415(98)80022-4 |
[12] |
Warfield SK, Zou KH, Wells WM . Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004; 23(7):903-21. doi:
doi: 10.1109/TMI.2004.828354 |
[13] |
Heckemann RA, Hajnal JV, Aljabar P , et al. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 2006; 33(1):115-26. doi:
doi: 10.1016/j.neuroimage.2006.05.061 |
[14] |
Artaechevarria X, Munoz-Barrutia A , Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 2009; 28(8):1266-77. doi:
doi: 10.1109/TMI.2009.2014372 |
[15] |
Aljabar P, Heckemann RA, Hammers A , et al. Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage 2009; 46(3): 726-38. doi: .
doi: 10.1016/j.neuroimage.2009.02.018 |
[16] |
Lotjonen JMP, Wolz R, Koikkalainen JR , et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 2010; 49(3):2352-65. doi:
doi: 10.1016/j.neuroimage.2009.10.026 |
[17] |
Sabuncu MR, Yeo BTT, Van Leemput K , et al. A Generative model for image segmentation based on label fusion. IEEE Trans Med Imaging 2010; 29(10):1714-29. doi:
doi: 10.1109/TMI.2010.2050897 |
[18] |
Langerak TR, van der Heide UA, Kotte ANTJ , et al. Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans Med Imaging 2010; 29(12):2000-8. doi:
doi: 10.1109/TMI.2010.2057442 |
[19] |
L?tj?nen JM, Wolz R, Koikkalainen JR , et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 2010; 49(3):2352-65.
doi: 10.1016/j.neuroimage.2009.10.026 |
[20] |
Langerak TR, van der Heide VA, Kotte ANTJ , et al. Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans Med Imaging 2010; 29(12):2000-8. doi:
doi: 10.1109/TMI.2010.2057442 |
[21] |
Zhang DQ, Wu GR, Jia HJ , et al. Confidence-guided sequential label Fusion for multi-atlas based segmentation. Int Conference on Medical Image Computing and Computer-Assisted Intervention; 2011 September 18-22; Toronto, Canada. Berlin, Heidelberg: Springer; 2011. p 643-50. doi: .
doi: 10.1007/978-3-642-23626-6_79 |
[22] |
Coupé P, Manjon JV, Fonov V , et al. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 2011; 54(2):940-54. doi:
doi: 10.1016/j.neuroimage.2010.09.018 |
[23] |
Rousseau F, Habas PA, Studholme C . A supervised patch-based approach for human brain labeling. IEEE Trans Med Imaging 2011; 30(10):1852-62. doi:
doi: 10.1109/TMI.2011.2156806 |
[24] |
Zhang D, Guo Q, Wu G , et al., editors. Sparse patch-based label fusion for multi-atlas segmentation. International Workshop on Multimodal Brain Image Analysis. 2012 Oct 1-5; Nice, France. Berlin, Heidelberg: Springer; 2012. p 94-102. doi: .
doi: 10.1007/978-3-642-33530-3_8 |
[25] |
Wang HZ, Suh JW, Das SR , et al. Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Machine Intell 2013; 35(3):611-23. doi:
doi: 10.1109/TPAMI.2012.143 |
[26] |
Wang HZ, Yushkevich PA . Groupwise segmentation with multi-atlas joint label fusion. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2013 Sep 22-26; Nagoya, Japan. Berlin, Heidelberg: Springer; 2013. p 711-8. doi: .
doi: 10.1007/978-3-642-40811-3_89 |
[27] |
Wang HZ, Yushkevich PA . Multi-atlas segmentation with joint label fusion and corrective learning — an open source implementation. Front Neuroinform 2013; 7. doi: .
doi: 10.3389/fninf.2013.00027 |
[28] |
Tong T, Wolz R, Coupe P , et al. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. Neuroimage 2013; 76(1):11-23. doi:
doi: 10.1016/j.neuroimage.2013.02.069 |
[29] |
Cardoso MJ, Leung K, Modat M , et al. STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 2013; 17(6):671-84. doi:
doi: 10.1016/j.media.2013.02.006 |
[30] |
Wu GR, Wang Q, Zhang DQ , et al. A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med Image Anal 2014; 18(6):881-90. doi:
doi: 10.1016/j.media.2013.10.013 |
[31] |
Sun L, Zu C, Zhang D . Reliability guided forward and backward patch-based method for multi-atlas segmentation. International Workshop on Patch-based Techniques in Medical Imaging; 2015 Oct 9; Munich, Germany. Cham: Springer; 2015. p 128-36. doi: .
doi: 10.1007/978-3-319-28194-0_16 |
[32] |
Wu GR, Kim MJ, Sanroma G , et al. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. Neuroimage 2015; 106:34-46. doi:
doi: 10.1016/j.neuroimage.2014.11.025 |
[33] |
Song Y, Wu G, Sun Q , et al. Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2015 October 5-9; Munich, Germany. Cham: Springer; 2015: p 190-7. doi: .
doi: 10.1007/978-3-319-24574-4_23 |
[34] |
Benkarim OM, Piella G, Ballester MAG , et al. Discriminative confidence estimation for probabilistic multi-atlas label fusion. Med Image Anal 2017; 42:274-87. doi:
doi: 10.1016/j.media.2017.08.008 |
[35] |
Song YT, Wu GR, Bahrami K , et al. Progressive multi-atlas label fusion by dictionary evolution. Med Image Anal 2017; 36:162-71. doi:
doi: 10.1016/j.media.2016.11.005 |
[36] |
Zu C, Wang ZX, Zhang DQ , et al. Robust multi-atlas label propagation by deep sparse representation. Pattern Recognition 2017; 63:511-7. doi:
doi: 10.1016/j.patcog.2016.09.028 |
[37] |
Liang S, Wei S , Zhang D, editors. High-order boltzmann machine-based unsupervised feature learning for multi-atlas segmentation. IEEE International Symposium on Biomedical Imaging. 2017 Apr 18-21; Melbourne, Australia. New York: IEEE; 2017. p 507-10. doi: .
doi: 10.1109/ISBI.2017.7950571 |
[38] |
Sanroma G, Benkarim OM, Piella G , et al. Learning non-linear patch embeddings with neural networks for label fusion. Med Image Anal 2018; 44:143-55. doi:
doi: 10.1016/j.media.2017.11.013 |
[39] |
Huo J, Wu J, Cao JW , et al. Supervoxel based method for multi-atlas segmentation of brain MR images. Neuroimage 2018; 175:201-14. doi:
doi: 10.1016/j.neuroimage.2018.04.001 |
[40] |
Sun L, Zu C, Shao W , et al. Reliability-based robust multi-atlas label fusion for brain MRI segmentation. Artif Intell Med 2019; 96:12-24. doi:
doi: 10.1016/j.artmed.2019.03.004 |
[41] |
Kittler J . Combining classifiers: A theoretical framework. Pattern Anal App 1998; 1(1):18-27. doi:
doi: 10.1007/BF01238023 |
[42] |
Wang H, Yushkevich P . Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation. Front Neuroinform 2013; 7:27. doi: .
doi: 10.3389/fninf.2013.00027 |
[43] |
Zhang QA, Li BX . Discriminative K-SVD for Dictionary Learning in Face Recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2010 Jun 13-18; San Francisco, CA, USA. New York: IEEE; 2010. p 2691-8. doi: .
doi: 10.1109/Cvpr.2010.5539989 |
[44] |
Yang M, Zhang L, Feng XC , et al. Fisher discrimination dictionary learning for sparse representation. International Conference on Computer Vision. 2011 Nov 6-13; Barcelona, Spain. New York: IEEE; 2011. p 543-50. doi: .
doi: 10.1109/ICCV.2011.6126286 |
[45] |
Ranzato M, Hinton GE . Modeling pixel means and covariances using factorized third-order boltzmann machines. IEEE Conference on Computer Vision and Pattern Recognition. 2010 Jun 13-18; San Francisco, CA, USA. New York: IEEE; 2010. p 2551-8. doi: .
doi: 10.1109/CVPR.2010.5539962 |
[46] |
Jack CR, Bernstein MA, Fox NC , et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magnet Resonan Imaging 2008; 27(4):685-91. doi:
doi: 10.1002/jmri.21049 |
[47] |
Christensen GE, Geng X, Kuhl JG , et al. Introduction to the non-rigid image registration evaluation project (NIREP). IEEE Trans Magnet 2006; 30(5):2972-5. doi:
doi: 10.1109/20.312561 |
[48] |
Shattuck DW, Mirza M, Adisetiyo V , et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008; 39(3):1064-80. doi:
doi: 10.1016/j.neuroimage.2007.09.031 |
[49] |
Evans AC, Collins DL, Mills SR , et al. 3D Statistical Neuroanatomical Models from 305 MRI Volumes. IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. 1993 Oct 31 - Nov 6; San Francisco, CA, USA. New York: IEEE; 1993. 1813-7. doi: .
doi: 10.1109/Nssmic.1993.373602 |
[50] |
Makropoulos A, Gousias IS, Ledig C , et al. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 2014; 33(9):1818-31. doi:
doi: 10.1109/TMI.2014.2322280 |
[51] |
Aljabar P, Rueckert D, Crum WR . Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. NeuroImage 2008; 43(2):225-35. doi:
doi: 10.1016/j.neuroimage.2008.07.055 |
[52] |
Pipitone J, Park MTM, Winterburn J , et al. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 2014; 101:494-512. doi:
doi: 10.1016/j.neuroimage.2014.04.054 |
[53] |
Chen YJ, Gao HY, Cai L , et al. Voxel Deconvolutional Networks for 3D Brain Image Labeling. Kdd’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018 Aug 19-23; London, UK. New York: ACM; 2018. p 1226-34. doi: .
doi: 10.1145/3219819.3219974 |
[54] |
Ronneberger O, Fischer P, Brox T . U-Net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015 Oct 5-9; Munich, Germany. Cham: Springer; 2015. p 234-41. doi:
doi: 10.1007/978-3-319-24574-4_28 |
[55] |
Shelhamer E, Long J, Darrell T . Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Machine Intell 2017; 39(4):640-51. doi:
doi: 10.1109/TPAMI.2016.2572683 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1