Chinese Medical Sciences Journal ›› 2018, Vol. 33 ›› Issue (1): 45-52.doi: 10.24920/31801
• ORIGINAL ARTICLE • Previous Articles Next Articles
He Ying1, 2, Zhang Ying1, Wang Mengying1, Zhang Meng1, Zhang Dan1, Zhang Ying1, Jiang Zhuocheng1, Wu Feng2, Chen Jinghong1, *
Received:
2017-02-20
Published:
2018-03-07
Online:
2018-03-07
Contact:
Chen Jinghong
He Ying,Zhang Ying,Wang Mengying,Zhang Meng,Zhang Dan,Zhang Ying,Jiang Zhuocheng,Wu Feng,Chen Jinghong. Gene Expression Profile of Hypertrophic Chondrocytes Treated with H2O2: A Preliminary Investigation[J].Chinese Medical Sciences Journal, 2018, 33(1): 45-52.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
Genes | Upstream primer (5’-3’) | Downstream primer (5’-3’) |
---|---|---|
GAPDH | GGGCTCATGACCACAGTCCATGC | CCTTGCCCACAGCCTTGGCA |
Col X | ACGCATCTCCCAGCACCAGAATC | GGGGCTAGCAAGTGGGCCCT |
Smad2 | ATGTCGTCCATCTTGCCATTC | AACCGTCCTGTTTTCTTTAGCTT |
Smad4 | GAGAACATTGGATGGACGACT | CACAGACGGGCATAGATCAC |
MMP10 | GCAGCCCATGAACTTGGCCACT | AGGGACCGGCTCCATACAGGG |
TGFβ2 | GACCAGAAATTCCCAGCTTCT | CAACGTCTCACACACCATCTG |
TGFβr1 | TGCCATAACCGCACTGTCA | AATGAAAGGGCGATCTAGTGATG |
TGFβr3 | ATGGCAGTGACATCCCACCACAT | AGAACGGTGAAGCTCTCCATCA |
"
No. | ID | Symbol | Description | Fold regulation |
---|---|---|---|---|
1 | NM_009893 | Chrd | Chordin | -2.38 |
2 | NM_009931 | Col4a1 | Collagen, type XIV, alpha 1 | -2.30 |
3 | NM_009969 | Csf2 | Colony stimulating factor 2 | -3.77 |
4 | NM_007802 | Ctsk | Cathepsin K | -4.80 |
5 | NM_008610 | MMP2 | Matrix metallopeptidase 2 | -3.54 |
6 | NM_013599 | MMP9 | Matrix metallopeptidase 9 | -3.37 |
7 | NM_019471 | MMP10 | Matrix metallopeptidase 10 | -2.29 |
8 | NM_010754 | Smad2 | MAD homolog 2 (Drosophila) | -2.30 |
9 | NM_008540 | Smad4 | MAD homolog 4 (Drosophila) | -2.08 |
10 | NM_009367 | Tgfb2 | Transforming growth factor, beta 2 | -3.47 |
11 | NM_009370 | Tgfbr1 | Transforming growth factor, beta receptor 1 | -459.31 |
12 | NM_011578 | Tgfbr3 | Transforming growth factor, beta receptor 3 | -2.32 |
"
NO. | ID | Symbol | Description | Fold regulation |
---|---|---|---|---|
1 | NM_007394 | Acvr1 | Activin A receptor, type 1 | 3.47 |
2 | NM_ 009673 | Anxa5 | Annexin A5 | 2.51 |
3 | NM_007542 | Bgn | Biglycan | 2.98 |
4 | NM_007561 | Bmpr2 | Bone morphogenic protein receptor, type 2 | 2.44 |
5 | NM_181277 | Col14a1 | Collagen, type XIV, alpha 1 | 2.31 |
6 | NM_011077 | Phex | Phosphate regulating gene with homologies to endopeptidases on the X chromosome | 4.37 |
7 | NM_009263 | Spp1 | Secreted phosphoprotein 1 | 4.25 |
8 | NM_009504 | Vdr | Vitamin D receptor | 2.34 |
9 | NM_011697 | Vegfb | Vascular endothelial growth factor B | 2.17 |
1. |
Duan C, Guo X, Zhang XD, et al. Comparative analysis of gene expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck disease. Arthritis Rheumatol,2010; 62(3):771-80. doi:10.1002/art.27282.
doi: 10.1002/art.27282 pmid: 20131229 |
2. |
Zhang F, Guo X, Wang W, et al. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck Disease. PLoS One,2011; 6(7):e22983. doi:10.1371/journal.pone.0022983.
doi: 10.1371/journal.pone.0022983 pmid: 21829570 |
3. |
Zou K, Liu G, Wu T, et al. Selenium for preventing Kashin-Beck osteoarthropathy in children: a meta-analysis. Osteoarthritis Cartilage,2009; 17(2):144-51. doi:10.1016/j.joca.2008.06.011.
doi: 10.1016/j.joca.2008.06.011 pmid: 18693119 |
4. |
Zhang WH, Neve J, Xu JP, et al. Selenium, iodine and fungal contamination in Yulin District (People’s Republic of China) endemic for Kashin-Beck disease. Int Orthop,2001; 25(3):188-90.
doi: 10.1007/s002640100242 pmid: 11482538 |
5. |
Guan F, Li S, Wang ZL, et al. Histopathology of chondronecrosis development in knee articular cartilage in a rat model of Kashin-Beck disease using T-2 toxin and selenium deficiency conditions. Rheumatol Int,2013; 33(1):157-66. doi:10.1007/s00296-011-2335-7.
doi: 10.1007/s00296-011-2335-7 pmid: 22258458 |
6. |
Chen JH, Xue S, Li S, et al. Oxidant damage in Kashin-Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions. J Orthop Res 2012; 30:(8):1229-37. doi:10.1002/jor.22073.
doi: 10.1002/jor.22073 pmid: 22294316 |
7. |
Allander E . Kashin-Beck disease. An analysis of research and public health activities based on a bibliography. Scand J Rheumatol Suppl,1994; 99:1-36.
doi: 10.3109/03009749409117126 pmid: 7801051 |
8. |
Wang W, Wei S, Luo M, et al. Oxidative stress and status of antioxidant enzymes in children with Kashin-Beck disease. Osteoarthritis Cartilage,2013; 21(11):1781-9. doi:10.1016/j.joca.2013.08.002.
doi: 10.1016/j.joca.2013.08.002 |
9. |
Olszewska-Slonina DM, Matewski D, Drewa G, et al. Oxidative equilibrium in the prophylaxis of degenerative joint changes: an analysis of pre and postoperative activity of antioxidant enzymes in patient with hip and knee osteoarthritis. Med Sci Monit 2010; 16(5):CR238-45.
doi: 10.1016/j.mehy.2009.07.026 pmid: 20424551 |
10. |
Biniecka M, Kennedy A, Fearon U, et al. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann Rheum Dis,2010; 69(6):1172-8. doi:10.1136/ard.2009.111211.
doi: 10.1136/ard.2009.111211 pmid: 19706618 |
11. |
Grigolo B, Roseti L, Fiorini M, et al. Enhanced lipid peroxidation in synoviocytes from patients with osteoarthritis. J Rheumatol,2003; 30(2):345-7.
doi: 10.1016/S1297-319X(02)00021-0 pmid: 12563693 |
12. |
Liochev SI . Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med,2013; 60:1-4. doi:10.1016/j.freeradbiomed.2013.02.011.
doi: 10.1016/j.freeradbiomed.2013.02.011 pmid: 23434764 |
13. |
Gao J, Deng Y, Yin C, et al. Icariside Ⅱ, a novel phosphodiesterase 5 inhibitor, protects against H2O2-induced PC12 cells death by inhibiting mitochondria-mediated autophagy. J Cell Mol Med,2017; 21(2):375-86. doi:10.1111/jcmm.12971.
doi: 10.1111/jcmm.12971 |
14. |
Lee JH, Jung HK, Han YS, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep,2016; 14(4):3777-84. doi:10.3892/mmr.2016.5706.
doi: 10.3892/mmr.2016.5706 pmid: 5042755 |
15. |
Boone DR, Micci MA, Taglialatela IG, et al. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One,2015; 10(5):e0127287. doi:10.1371/journal.pone.0127287.
doi: 10.1371/journal.pone.0127287 pmid: 26016641 |
16. |
Zhang F, Dai L, Lin W, et al. Exome sequencing identified FGF12 as a novel candidate gene for Kashin-Beck disease. Funct Integr Genomics,2016; 16(1):13-7. doi:10.1007/s10142-015-0462-z.
doi: 10.1007/s10142-015-0462-z pmid: 26290467 |
17. |
Boone DR, Micci MA, Taglialatela IG, et al. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One,2015; 10(5):e0127287. doi:10.1371/journal.pone.0127287.
doi: 10.1371/journal.pone.0127287 pmid: 26016641 |
18. |
Zhang F, Wen Y, Guo X, et al. Genome-wide association study identifies ITPR2 as a susceptibility gene for Kashin-Beck disease in Han Chinese. Arthritis Rheumatol,2015; 67(1):176-81. doi:10.1002/art.38898.
doi: 10.1002/art.38898 pmid: 25303641 |
19. |
Shen J, Li S, Chen D . TGF-β signaling and the development of osteoarthritis. Bone Res 2014; 2 pii: 14002. doi:10.1038/boneres.2014.2.
doi: 10.1038/boneres.2014.2 pmid: 25541594 |
20. |
Serra R, Johnson M, Filvaroff EH, et al. Expression of a truncated, kinase-defective TGF-beta type Ⅱ receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol,1997; 139(2):541-52.
doi: 10.1083/jcb.139.2.541 |
21. |
Blaney Davidson EN, Remst DF, Vitters EL, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol,2009; 182(12):7937-45. doi:10.4049/jimmunol.0803991.
doi: 10.4049/jimmunol.0803991 pmid: 19494318 |
22. |
Dünker N, Krieglstein K . Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem,2000; 2677(24):6982-8.
doi: 10.1046/j.1432-1327.2000.01825.x pmid: 11106407 |
23. |
van der Kraan P, Matta C, Mobasheri A . Age-related alterations in signaling pathways in articular chondrocytes: implications for the pathogenesis and progression of osteoarthritis―a mini-review. Gerontology,2016; 63(1):29-35. doi:10.1159/000448711.
doi: 10.1159/000448711 pmid: 27595269 |
24. |
Valdes AM, Spector TD, Tamm A, et al. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum,2010; 62(8):2347-52. doi:10.1002/art.27530.
doi: 10.1002/art.27530 pmid: 20506137 |
25. |
Niu W, Sun ZT, Cao XW, et al. Regulation of single herb pilose antler on the expression of Smad2 and Smad3 in the cartilage of OA rats: an experimental research. Zhongguo Zhong Xi Yi Jie He Za Zhi,2014; 34(2):209-13.
pmid: 24672947 |
26. |
Song B, Estrada KD, Lyons KM . Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev,2009; 20(5-6):379-88. doi:10.1016/j.cytogfr.2009.10.010.
doi: 10.1016/j.cytogfr.2009.10.010 pmid: 19926329 |
27. |
Tremblay KD, Hoodless PA, Bikoff EK, et al. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development,2000; 127(14):3079-90.
doi: 10.1007/s00534-005-0999-7 pmid: 10862745 |
28. |
Weinstein M, Yang X, Li C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA,1998; 95(16):9378-83. doi:10.1073/pnas.95.16.9378.
doi: 10.1073/pnas.95.16.9378 pmid: 9689088 |
29. |
Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrula-tion and later for anterior development of the mouse embryo. Genes Dev,1998; 12(1):107-19.
doi: 10.1101/gad.12.1.107 |
30. |
Li J, Huang J, Dai L, et al. miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther,2012; 14(2):R75. doi:10.1186/ar3798.
doi: 10.1186/ar3798 pmid: 22507670 |
31. |
Hughes OB, Rakosi A, Macquhae F, et al. A review of cellular and acellular matrix products: indications, techniques, and outcomes. Plast Reconstr Surg,2016; 138(3 Suppl):138S-47S. doi:10.1097/PRS.0000000000002643.
doi: 10.1097/PRS.0000000000002643 |
32. |
Pak J, Lee JH, Park KS, et al. Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix. Biores Open Access,2016; 5(1):192-200. doi:10.1089/biores.2016.0024.
doi: 10.1089/biores.2016.0024 |
33. |
Murphy G, Kn?uper V, Atkinson S, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res 2002; 4 Suppl 3:S39-49. doi:10.1186/ar572.
doi: 10.1186/ar572 |
34. |
Zeng GQ, Chen AB, Li W, et al. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet Mol Res,2015; 14(4):14811-22. doi:10.4238/2015.
doi: 10.4238/2015 pmid: 26600542 |
35. |
Jackson MT, Moradi B, Smith MM, et al. Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes. Arthritis Rheumatol,2014; 66(6):1525-36. doi:10.1002/art.38401.
doi: 10.1002/art.38401 pmid: 24574263 |
36. |
Rohani MG , McMahan RS, Razumova MV, et al. MMP-10 regulates collagenolytic activity of alternatively activated resident macrophages. J Invest Dermatol,2015; 135(10):2377-84. doi:10.1038/jid.2015.167.
doi: 10.1038/jid.2015.167 pmid: 25927164 |
37. |
Appleton CT, Pitelka V, Henry J, et al. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum,2007; 56(6):1854-68. doi:10.1002/art.22711.
doi: 10.1002/art.22711 pmid: 17530714 |
38. |
Dahlberg L, Billinghurst RC, Manner P, et al. Selective enhancement of collagenase-mediated cleavage of resident type Ⅱ collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase1 (matrix metalloproteinase 1). Arthritis Rheum,2000; 43(3):673-82. doi:10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8
doi: 10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO |
39. |
Kozawa E, Nishida Y, Cheng XW, et al. Osteoarthritic change is delayed in a Ctsk-knockout mouse model of osteoarthritis. Arthritis Rheum,2012; 64(2):454-64. doi:10.1002/art.33398.
doi: 10.1002/art.33398 pmid: 21968827 |
[1] | Rongqiang Zhang, Dandan Zhang, Di Zhang, Xiaoli Yang, Qiang Li, Chen Wang, Xuena Yang, Yongmin Xiong. Crosstalk between CpG Methylation and Polymorphisms (CpG-SNPs) in the Promotor Region of DIO2 in Kashin-Beck Disease [J]. Chinese Medical Sciences Journal, 2022, 37(1): 52-59. |
[2] | Ping Fen, Cao Qin, Lin Hua, Han Shuzhi. Antagonistic Effects of N-acetylcysteine on Mitogen-activated Protein Kinase Pathway Activation, Oxidative Stress and Inflammatory Responses in Rats with PM2.5 Induced Lung Injuries [J]. Chinese Medical Sciences Journal, 2019, 34(4): 270-276. |
[3] | Pan Yanfang, Jia Xiaotao, Song Erfei, Peng Xiaozhong. Astragaloside IV Protects Against Aβ1-42-induced Oxidative Stress, Neuroinflammation and Cognitive Impairment in Rats [J]. Chinese Medical Sciences Journal, 2018, 33(1): 29-37. |
[4] | Kong Xiangyi, Guan Jian, Gong Shun, Wang Renzhi. Neuroprotective Effects of Grape Seed Procyanidin Extract on Ischemia-Reperfusion Brain Injury△ [J]. Chinese Medical Sciences Journal, 2017, 32(2): 92-99. |
[5] | Fen Ping, Zhen-sheng Li, Feng-rui Zhang, De-xin Li, Shu-zhi Han. Effects of Lianhua Qingwen on Pulmonary Oxidative Lesions Induced by Fine Particulates (PM2.5) in Rats [J]. Chinese Medical Sciences Journal, 2016, 31(4): 233-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1