Chinese Medical Sciences Journal ›› 2022, Vol. 37 ›› Issue (3): 210-217.doi: 10.24920/004086
• Scientific Data Sharing and Reuse:Original Article • Previous Articles Next Articles
Chun Wang1, Qinxue Chang1, Xiaomeng Wang1, Keyun Wang1, He Wang2, Zhuang Cui1, *(), Changping Li1, *()
Received:
2022-03-21
Accepted:
2022-08-24
Published:
2022-09-30
Online:
2022-09-22
Contact:
Zhuang Cui,Changping Li
E-mail:zhuangcui417@126.com;changpingli417@126.com
Chun Wang, Qinxue Chang, Xiaomeng Wang, Keyun Wang, He Wang, Zhuang Cui, Changping Li. Prostate Cancer Risk Prediction and Online Calculation Based on Machine Learning Algorithm[J].Chinese Medical Sciences Journal, 2022, 37(3): 210-217.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1.
The variables from the dataset and abbreviations used in modeling and prediction of prostate cancer in this study"
Indicator | Abbreviation |
---|---|
Demographic information | |
Age | - |
Height | - |
Weight | - |
Body mass index | BMI |
Prostate indicators | |
Free prostate specific antigen | fPSA |
Total prostate specific antigen | tPSA |
Free prostate-specific antigen ratio | rPSA |
Volume of core-biopsy sampled tissue | CBV |
Offwhite fragile tissue in biopsied samples | OFT |
Transurethral resection prostate | TURP |
Presence of accompanying prostatic hyperplasia | - |
Volume of prostate | PV |
Serum enzymatic examination | |
Alkaline phosphatase | ALP |
Creatine kinase isoenzyme | CK_MB |
Lactic dehydrogenase | LDH |
Creatine kinase | CK |
Blood biochemical indicators | |
Creatinine | CR |
Albuminous | ALB |
Serum uric acid | UA |
Triglyceride | TG |
High density lipoprotein cholesterol | HDLC |
Low density lipoprotein cholesterol | LDLC |
Apolipoprotein A1 | ApoA1 |
Apolipoprotein B | ApoB |
Estimated glomerular filtration rate | eGFR |
Electrolyte indicators | |
Potassium | K |
Inorganic phosphorus | iP |
Sodium | Na |
Inorganic calcium | iCa |
Chloride | CL |
Table 2.
The confusion matrix of prediction results of four models"
Actual | Predicted | Row Total | |
---|---|---|---|
Non-PCa | PCa | ||
RF model | |||
Non-PCa | 149 | 3 | 152 |
PCa | 5 | 93 | 98 |
Column total | 154 | 96 | 250 |
SVM model | |||
Non-PCa | 141 | 26 | 167 |
PCa | 26 | 107 | 133 |
Column total | 167 | 133 | 300 |
BP model | |||
Non-PCa | 264 | 47 | 311 |
PCa | 19 | 270 | 289 |
Column total | 283 | 317 | 600 |
CNN model | |||
Non-PCa | 74 | 21 | 95 |
PCa | 35 | 71 | 106 |
Column total | 109 | 92 | 201 |
1. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
2. |
Lee SE, Chung JS, Han BK, et al. Relationship of prostate-specific antigen and prostate volume in Korean men with biopsy-proven benign prostatic hyperplasia. Urology 2008; 71(3): 395-8. doi: 10.1016/j.urology.2007.10.019.
doi: 10.1016/j.urology.2007.10.019 pmid: 18342171 |
3. | Mousavi SM. Toward prostate cancer early detection in Iran. Asian Pac J Cancer Prev 2009; 10(3): 413-8. |
4. | The General Hospital of the People’s Liberation Army. Prostate Cancer Data Set. Population Health Data Archive PHDA, 2019. CSTR: A0006.11.A0005.201905.000531. |
5. |
Liu X, Cheng MH, Shi CG, et al. Variability of glomerular filtration rate estimation equations in elderly Chinese patients with chronic kidney disease. Clin Interv Aging 2012; 7: 409-15. doi: 10.2147/CIA.S36152.
doi: 10.2147/CIA.S36152 pmid: 23091374 |
6. |
Taft LM, Evans RS, Shyu CR, et al. Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery. J Biomed Inform 2009; 42(2): 356-64. doi: 10.1016/j.jbi.2008.09.001
doi: 10.1016/j.jbi.2008.09.001 pmid: 18824133 |
7. |
Toth R, Schiffmann H, Hube-Magg C, et al. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11(1): 148. doi: 10.1186/s13148-019-0736-8.
doi: 10.1186/s13148-019-0736-8 pmid: 31640781 |
8. |
Lan L, Wang Z, Zhe SD, et al. Scaling up kernel SVM on limited resources: A low-rank linearization approach. IEEE Trans Med Imaging 2019; 30(2): 369-78. doi: 10.1109/TNNLS.2018.2838140.
doi: 10.1109/TNNLS.2018.2838140 |
9. |
Shin HC, Roth HR, Gao MC, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35(5): 1285-98. doi: 10.1109/TMI.2016.2528162.
doi: 10.1109/TMI.2016.2528162 |
10. | Xie J. Study on the drying model of larch wood based on artificial neural network[dissertation]. Northeast Forestry University; 2013. |
11. | The Online Platform for Prostate Cancer Risk Prediction. Department of Epidemiology and Health Statistics, Tianjin Medical University; c2021. Available from: https://pcarisk.shinyapps.io/pcapred/. Released:November 30, 2021. |
12. |
Lacher DA, Hughes JP. Total, free, and complexed prostate-specific antigen levels among US men, 2007-2010. Clin Chim Acta 2015; 448: 220-7. doi: 10.1016/j.cca.2015.06.009.
doi: 10.1016/j.cca.2015.06.009 pmid: 26093340 |
13. |
Ju HX, Wang T, Wang W, et al. A comparative study of prostate cancer prediction models. Data Knowl Discov 2021; 5(09): 107-14. doi: 10.11925/infotech.2096-3467.2020.1185.
doi: 10.11925/infotech.2096-3467.2020.1185 |
14. |
Wang YF, Wu H, Xue WG, et al. Classification prediction and analysis of cancer risk factors for prostate cancer and prostate hyperplasia. Acad J PLA Med Sch 2021; 42(3): 277-81, +305. Chinese. doi: 10.3969/j.issn.2095-5227.2021.03.008.
doi: 10.3969/j.issn.2095-5227.2021.03.008 |
15. |
Van Hemelrijck M, Garmo H, Holmberg L, et al. Prostate cancer risk in the Swedish AMORIS study: the interplay among triglycerides, total cholesterol, and glucose. Cancer 2011; 117(10): 2086-95. doi: 10.1002/cncr.25758.
doi: 10.1002/cncr.25758 pmid: 21523720 |
16. |
Arthur R, Møller H, Garmo H, et al. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories. Cancer Med 2016; 5(6): 1307-18. doi: 10.1002/cam4.665.
doi: 10.1002/cam4.665 |
17. |
Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 2012; 4(1): 31-40. doi: 10.1159/000330095.
doi: 10.1159/000330095 pmid: 21912088 |
[1] | Lianyan Xu, Ke Yan, Le Lu, Weihong Zhang, Xu Chen, Xiaofei Huo, Jingjing Lu. External and Internal Validation of a Computer Assisted Diagnostic Model for Detecting Multi-Organ Mass Lesions in CT images [J]. Chinese Medical Sciences Journal, 2021, 36(3): 210-217. |
[2] | Yang Bo, Wang Jiansheng. Effects of Exercise on Cancer-related Fatigue and Quality of Life in Prostate Cancer Patients Undergoing Androgen Deprivation Therapy: A Meta-analysis of Randomized Clinical Trials [J]. Chinese Medical Sciences Journal, 2017, 32(1): 13-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1