Chinese Medical Sciences Journal ›› 2022, Vol. 37 ›› Issue (1): 23-30.doi: 10.24920/003982
• Original Article • Previous Articles Next Articles
Atefeh Beigi-khoozani1, Amirmohammad Merajikhah2, *(), Mahdieh Soleimani3
Received:
2021-08-14
Accepted:
2021-10-15
Published:
2022-03-31
Online:
2022-03-07
Contact:
Amirmohammad Merajikhah
E-mail:amir.meraj74@gmail.com
Atefeh Beigi-khoozani, Amirmohammad Merajikhah, Mahdieh Soleimani. Magnetic Resonance Imaging Findings of Olfactory Bulb in Anosmic Patients with COVID-19: A Systematic Review[J].Chinese Medical Sciences Journal, 2022, 37(1): 23-30.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The results of magnetic resonance imaging on the olfactory system in COVID-19 patients."
References | Study type | Number of patients | Cause of OD | Assessment | MRI manifestations | |||
---|---|---|---|---|---|---|---|---|
Odor assessment | Imaging modality | Olfactory cleft (OC) | Olfactory bulb (OB) | |||||
Klironomos S, et al[ | Retrospective cohort study | 185 | SARS-CoV-2 infection | RT-PCR | CT and MRI | None | Abnormal OB signals | |
Altundag A, et al[ | Prospective | 91 | SARS-CoV-2 infection; Non-SARS-CoV-2 infection | RT-PCR; Sniffin’ sticks test | CT and MRI | Increased widths and volume of OC | No significant difference in OB volumes and olfactory sulcus depths on MRI among anosmic patients | |
Eliezer M, et al[ | Prospective case-controlled | 20 | SARS-CoV-2 infection | PCR; Visual Olfactive Score (VOS) | MRI | Complete obstruction of the OC occured in 95% of patients at the early stage; no obstruction was seen was seen during the 1-month follow-up | On the first MRI session, no significant difference in OB volume. At the 1-month follow-up visit, no significant difference in OB volume. Normal morphology of the OB | |
Niesen M, et al[ | Prospective | 12 | SARS-CoV-2 infection | RT-PCR | PET; MRI with fluorodeoxyglucose | Bilateral obliteration of the OC in 50% of patients | Subtle asymmetry in OB | |
Kandemirli SG, et al[ | Prospective | 23 | COVID-19 | PCR; Sniffin’ sticks test | CT; MRI | High rate of OC opacification | Reduction in OB volume; altered OB shape; signal abnormalities | |
Aragão MFVV, et al[ | Retrospective | 5 | SARS-CoV-2 infection | Not performed | MRI with contrast enhancement | None | Abnormal OB intensities in all patients | |
Brookes N, et al[ | Case series | 4 | COVID-19 | University of Pennsylvania Smell Identification Test (UPSIT) | MRI | None | In two cases, MRI showed normal OB and cribriform plates, along with minimal mucosal thickening in the ethmoid sinuses. | |
Coolen T, et al[ | Prospective, case series | 19 | SARS-CoV-2 infection | PCR; chest CT | MRI and PET | Asymmetric olfactory bulb was observed, with or without obliteration of OC. Obliteration of OC and ipsilateral inflammation of OB | Asymmetric OB, inflation of OB |
Table 2
Treatments and outcomes of patients treated with topical steroids or saline"
Result of G immunoglobulin | Duration of effectiveness | Recovery time | Route of administration | Medicines in treatment | |
---|---|---|---|---|---|
Total | Partial | ||||
Positive | 7 days | 2 - 3 weeks | 1 week (40% - 85%) | Oral | Steroids |
Positive | 7 days | 2 - 3 weeks | 1 week (40% - 85%) | Local | Steroid drops |
Positive | 3 days | 2 weeks | 1 week (85%) | Local | Ephedrine |
Positive | 3 days | 2 weeks | 1 week (85%) | Local | Betnesol |
Positive | 3 days | 2 weeks | 6 days | Oral | Prednisolone |
None | 8 days | 2 weeks | 8 days | Local | Nasal saline irrigations |
1. |
Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. Chin Med Associat 2020; 83(3):217-20. doi: 10.1097/jcma.0000000000000270.
doi: 10.1097/jcma.0000000000000270 |
2. | World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 11 March 2020. Available from https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020. Accessed March 5, 2021. |
3. |
Struyf T, Deeks JJ, Dinnes J, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev 2020; 7(7):CD013665. doi: 10.1002/14651858.CD013665.
doi: 10.1002/14651858.CD013665 |
4. |
Rocke J, Hopkins C, Philpott C, et al. Is loss of sense of smell a diagnostic marker in COVID-19: A systematic review and meta-analysis. Clini Otolaryngol 2020; 45(6):914-22. doi: https://doi.org/10.1111/coa.13620.
doi: https://doi.org/10.1111/coa.13620 |
5. | Hopkins C, Kumar N. Loss of sense of smell as marker of COVID-19 infection. The Royal College of Surgeons of England: British Rhinological Society 2020. http://www.entuk.com/_userfiles/pages/files/loss_of_sense_of_Smell-_as_marker_of_covid.pdf |
6. |
Tong JY, Wong A, Zhu D, et al. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and Meta-analysis. Otolaryngology-Head and Neck Surgery 2020; 163(1):3-11. doi: 10.1177/0194599820926473.
doi: 10.1177/0194599820926473 |
7. |
Al-Ani RM, Acharya D. Prevalence of anosmia and ageusia in patients with COVID-19 at a primary health center, Doha, Qatar. Ind J Otolaryngol Head Neck Surg 2020; 1-7. doi: 10.1007/s12070-020-02064-9.
doi: 10.1007/s12070-020-02064-9 |
8. |
Mishra P, Gowda V, Dixit S, et al. Prevalence of New Onset Anosmia in COVID-19 Patients: Is The Trend Different Between European and Indian Population? Ind J Otolaryngol Head Neck Surg 2020; 72(4):484-87. doi: 10.1007/s12070-020-01986-8.
doi: 10.1007/s12070-020-01986-8 |
9. | American Academy of Otolaryngology-Head and Neck Surgery. Anosmia, hyposmia, and dysgeusia symptoms of coronavirus disease. Available from https://www.entnet.org/content/aao-hns-anosmia-hyposmia-and-dysgeusia-symptomscoronavirus-disease. Accessed May 1, 2020. |
10. |
Lechner M, Chandrasekharan D, Jumani K, et al. Anosmia as a presenting symptom of SARS-CoV-2 infection in healthcare workers-a systematic review of the literature, case series, and recommendations for clinical assessment and management. Rhinology 2020; 58(4):394-9. doi: 10.4193/Rhinzo.189.
doi: 10.4193/Rhin20.189 pmid: 32386285 |
11. | US CfDCa. Symptoms of COVID-19. Available from https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed April 17, 2020. |
12. |
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1):8. doi: 10.1038/s41368-020-0074-x.
doi: 10.1038/s41368-020-0074-x |
13. |
Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26(5):681-7. doi: 10.1038/s41591-020-0868-6.
doi: 10.1038/s41591-020-0868-6 |
14. |
Geurkink N. Nasal anatomy, physiology, and function. J Allergy Clin Immunol 1983; 72(2):123-128.
doi: 10.1016/0091-6749(83)90518-3 |
15. |
Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020; 6(31):eabc5. doi: 10.1101/2020.03.25.009084.
doi: 10.1101/2020.03.25.009084 |
16. |
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England) 2020; 395(10224):565-74. doi: 10.1016/s0140-6736(20)30251-8.
doi: 10.1016/s0140-6736(20)30251-8 |
17. |
Jahanshahlu L, Rezaei N. Central nervous system involvement in COVID-19. Arch Med Res. 2020; 51:721-2. doi: 10.1016/j.arcmed.2020.05.016.
doi: 10.1016/j.arcmed.2020.05.016 pmid: 32471704 |
18. |
Saghazadeh A, Rezaei N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. Int Immunopharmacol 2020; 84(106560):1-6. doi: 10.1016/j.intimp.2020.106560.
doi: 10.1016/j.intimp.2020.106560 |
19. | Yazdanpanah N, Saghazadeh A, Rezaei N. Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19). Rev Neurosci 2020; 1. |
20. |
Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020; 323(23):2427-9. doi: 10.1001/jama.2020.8707.
doi: 10.1001/jama.2020.8707 pmid: 32432657 |
21. |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052.
doi: 10.1016/j.cell.2020.02.052 |
22. |
Boesveldt S, Postma EM, Boak D, et al. Anosmia: A clinical review. Chem Senses 2017; 42(7):513-23. doi: 10.1093/chemse/bjx025.
doi: 10.1093/chemse/bjx025 pmid: 28531300 |
23. |
Moran DT, Jafek BW, Eller PM, et al. Ultrastructural histopathology of human olfactory dysfunction. Microscopy Res Tech 1992; 23(2):103-110.
doi: 10.1002/jemt.1070230202 |
24. |
Galougahi MK, Ghorbani J, Bakhshayeshkaram M, et al. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report. Acad Radiol 2020; 27(6):892-3. doi: 10.1016/j.acra.2020.04.002.
doi: 10.1016/j.acra.2020.04.002 |
25. |
Chetrit A, Lechien JR, Ammar A, et al. Magnetic resonance imaging of COVID-19 anosmic patients reveals abnormalities of the olfactory bulb: Preliminary prospective study. J infect 2020; 81(5):816-46. doi: 10.1016/j.jinf.2020.07.028.
doi: 10.1016/j.jinf.2020.07.028 |
26. |
Girardeau Y, Gallois Y, De Bonnecaze G, et al. Confirmed central olfactory system lesions on brain MRI in COVID-19 patients with anosmia: a case-series. medRxiv 2020; 2020.2007.2008.20148692. doi: 10.1101/2020.07.08.20148692.
doi: 10.1101/2020.07.08.20148692 |
27. |
Klironomos S, Tzortzakakis A, Kits A, et al. Nervous System Involvement in COVID-19: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology 2020; 202791. doi: 10.1148/radiol.2020202791.
doi: 10.1148/radiol.2020202791 |
28. |
Altundag A, Yıldırım D, Sanli DET, et al. Olfactory cleft measurements and COVID-19-related anosmia. Otolaryngol Head Neck Surg 2021; 164(6):1337-44. Epub 2020 Oct 13. doi: 10.1177/0194599820965920.
doi: 10.1177/0194599820965920 |
29. |
Eliezer M, Hamel AL, Houdart E, et al. Loss of smell in COVID-19 patients: MRI data reveals a transient edema of the olfactory clefts. Neurology 2020; 95(23):e3145-e3152. doi: 10.1212/WNL.0000000000010806.
doi: 10.1212/WNL.0000000000010806 |
30. |
Niesen M, Trotta N, Noel A, et al. Structural and metabolic brain abnormalities in COVID-19 patients with sudden loss of smell. Eur J Nucl Med Mol Imaging 2021; 48(6):1890-901. doi: 10.1007/s00259-020-05154-6.
doi: 10.1007/s00259-020-05154-6 |
31. |
Kandemirli SG, Altundag A, Yildirim D, et al. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol 2021; 28(1):28-35. doi: 10.1016/j.acra.2020.10.006.
doi: 10.1016/j.acra.2020.10.006 pmid: 33132007 |
32. |
Aragão MFVV, Leal MC, Cartaxo Filho OQ, et al. Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI. Am J Neuroradiol 2020; 41(9):1703-6. doi: 10.3174/ajnr.A6675.
doi: 10.3174/ajnr.A6675 pmid: 32586960 |
33. |
Brookes NRG, Fairley JW, Brookes GB. Acute olfactory dysfunction—A primary presentation of COVID-19 infection. Ear Nose Throat J 2020; 99(9):94-8. doi: 10.1177/0145561320940119.
doi: 10.1177/0145561320940119 |
34. |
Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology 2020; 95(14):e2016-e2027. doi: 10.1212/WNL.0000000000010116.
doi: 10.1212/WNL.0000000000010116 |
35. |
Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 2020; 58(3):299-301. doi: 10.4193/rhin20.114.
doi: 10.4193/Rhin20.114 pmid: 32240279 |
36. |
Naeini AS, Karimi-Galougahi M, Raad N, et al. Paranasal sinuses computed tomography findings in anosmia of COVID-19. Am J Otolaryngol 2020; 41(6):102636. doi: 10.1016/j.amjoto.2020.102636.
doi: 10.1016/j.amjoto.2020.102636 |
37. |
Butowt R, Bilinska K. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chemical Neuroscience 2020; 11(9):1200-1203. doi: 10.1021/acschemneuro.0c00172.
doi: 10.1021/acschemneuro.0c00172 pmid: 32283006 |
38. |
Jalessi M, Barati M, Rohani M, et al. Frequency and outcome of olfactory impairment and sinonasal involvement in hospitalized patients with COVID-19. Neurol Sci 2020; 41(9):2331-8. doi: 10.1007/s10072-020-04590-4.
doi: 10.1007/s10072-020-04590-4 pmid: 32656713 |
39. |
Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg 2020; 146(7):674-5. doi: 10.1001/jamaoto.2020.0832.
doi: 10.1001/jamaoto.2020.0832 |
40. |
Cooper KW, Brann DH, Farruggia MC, et al. COVID-19 and the chemical senses: supporting players take center stage. Neuron 2020; 107(2):219-33. doi: 10.1016/j.neuron.2020.06.032.
doi: 10.1016/j.neuron.2020.06.032 |
41. |
Trotier D, Bensimon JL, Herman P, et al. Inflammatory Obstruction of the Olfactory Clefts and Olfactory Loss in Humans: A New Syndrome? Chemi Senses 2007; 32(3):285-92. doi: 10.1093/chemse/bjl057.
doi: 10.1093/chemse/bjl057 |
42. |
Han AY, Mukdad L, Long JL, et al. Anosmia in COVID-19: mechanisms and significance. Chem senses 2020; 45(6):423-8. doi: 10.1093/chemse/bjaa040.
doi: 10.1093/chemse/bjaa040 |
43. |
Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Experi Med 2005; 202(3):415-24. doi: 10.1084/jem.20050828.
doi: 10.1084/jem.20050828 |
44. |
Cao Y, Li L, Feng Z, Wan S, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell discovery 2020; 6(1):1-4. doi: 10.1038/s41421-020-0147-1.
doi: 10.1038/s41421-020-0147-1 |
45. |
Rombaux P, Mouraux A, Bertrand B, et al. Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. The Laryngoscope 2006; 116(3):436-9. doi: 10.1097/01.MLG.0000195291.36641.1E.
doi: 10.1097/01.MLG.0000195291.36641.1E |
46. |
Mueller A, Rodewald A, Reden J, et al. Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport 2005; 16(5):475-8. doi: 10.1097/00001756-200504040-00011.
doi: 10.1097/00001756-200504040-00011 pmid: 15770154 |
47. |
Laurendon T, Radulesco T, Mugnier J, et al. Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology 2020; 95(5):224-5. doi: 10.1212/WNL.0000000000009850.
doi: 10.1212/WNL.0000000000009850 pmid: 32444492 |
48. |
Zheng J, Wong LYR, Li K, et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 2021; 589(7843):603-7. doi: 10.1038/s41586-020-2943-z.
doi: 10.1038/s41586-020-2943-z |
49. |
Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management. JAMA 2020; 323(24):2512-4. doi: 10.1001/jama.2020.8391.
doi: 10.1001/jama.2020.8391 |
50. |
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Archives Oto-Rhino-Laryngol 2020; 277(8):2251-61. doi: 10.1007/s00405-020-05965-1.
doi: 10.1007/s00405-020-05965-1 |
51. |
Touisserkani SK, Ayatollahi A. Oral corticosteroid relieves post-COVID-19 anosmia in a 35-year-old patient. Case Rep Otolaryngol 2020; 2020:5892047. doi: 10.1155/2020/5892047.
doi: 10.1155/2020/5892047 |
52. |
Tanasa IA, Manciuc C, Carauleanu A, et al. Anosmia and ageusia associated with coronavirus infection (COVID-19)- what is known? Experi Thera Med 2020; 20(3):2344-7. doi: 10.3892/etm.2020.8808.
doi: 10.3892/etm.2020.8808 |
[1] | Fangzhi Du, Ruili Zhang, Qianqiu Wang. Eliminating Mother-to-Child Transmission of Syphilis: Chinese Practice before and during COVID-19 Pandemics [J]. Chinese Medical Sciences Journal, 2022, 37(1): 67-72. |
[2] | Lan Song, Zhenchen Zhu, Ruijie Zhao, Pengchang Li, Duxue Tian, Tiekuan Du, Yan Xu, Qiwen Yang, Wei Cao, Wei Song, Zhengyu Jin. Epidemiologic Features, Radiological Findings andClinical Outcomes of 19 Patients with COVID-19in a Single Center in Beijing, China [J]. Chinese Medical Sciences Journal, 2021, 36(2): 85-96. |
[3] | Jia Xu, Xuan Wang, Zhengyu Jin, Qin Wang, Yan You, Shitian Wang, Tianyi Qian, Huadan Xue. Assessing Liver Function by T1 Maps on Gd-EOB-DTPA-Enhanced MRI for up to 50 Min in Rat Models of Liver Fibrosis: A Longer Hepatobiliary Time Period may Help [J]. Chinese Medical Sciences Journal, 2021, 36(2): 110-119. |
[4] | Bin Wu,Jianghua Zhou,Wenxin Wang,Huilin Yang,Meng Xia,Binghong Zhang,Zhigang She,Hongliang Li. Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients [J]. Chinese Medical Sciences Journal, 2021, 36(1): 17-26. |
[5] | Chen Xu, Zhang Gang, Hao Shuaiying, Bai Lin, Lu Jingjing. Similarities and Differences of Early Pulmonary CT Features of Pneumonia Caused by SARS-CoV-2, SARS-CoV and MERS-CoV: Comparison Based on a Systemic Review [J]. Chinese Medical Sciences Journal, 2020, 35(3): 254-261. |
[6] | Wang Xuedan, Wang Shiwei, Wang Botao, Chen Zhiye. Effect of MR Field Strength on the Texture Features of Cerebral T2-FLAIR Images: A Pilot Study [J]. Chinese Medical Sciences Journal, 2020, 35(3): 248-253. |
[7] | Zuo Mingzhang,Huang Yuguang,Ma Wuhua,Xue Zhanggang,Zhang Jiaqiang,Gong Yahong,Che Lu, Chinese Society of Anesthesiology Task Force on Airway Management. Expert Recommendations for Tracheal Intubation in Critically Ill Patients with Noval Coronavirus Disease 2019 [J]. Chinese Medical Sciences Journal, 2020, 35(2): 105-109. |
[8] | Damanpak Moghadam Vahid,Shafiee Hamed,Ghorbani Maryam,Heidarifar Reza. Letter to the Editor: Additional Recommendations before Intubation of COVID-19 Patients [J]. Chinese Medical Sciences Journal, 2020, 35(2): 110-111. |
[9] | Tian Yi, Gong Yahong, Liu Peiyu, Wang Sheng, Xu Xiaohan, Wang Xiaoyue, Huang Yuguang. Infection Prevention Strategy in Operating Room during Coronavirus Disease 2019 (COVID-19) Outbreak [J]. Chinese Medical Sciences Journal, 2020, 35(2): 114-120. |
[10] | Xu Yanhong,Yang Jia,Meng Jie,Wang Han. Targeted MR Imaging Adopting T1-Weighted Ultra-Small Iron Oxide Nanoparticles for Early Hepatocellular Carcinoma: An in vitro and in vivo Study [J]. Chinese Medical Sciences Journal, 2020, 35(2): 142-150. |
[11] | Xu Jia, Wang Xuan, Jin Zhengyu, You Yan, Wang Qin, Wang Shitian, Xue Huadan. Value of Texture Analysis on Gadoxetic Acid-enhanced MR for Detecting Liver Fibrosis in a Rat Model [J]. Chinese Medical Sciences Journal, 2019, 34(1): 24-32. |
[12] | Wang Botao, Fan Wenping, Xu Huan, Li Lihui, Zhang Xiaohuan, Wang Kun, Liu Mengqi, You Junhao, Chen Zhiye. Value of Magnetic Resonance Imaging Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors [J]. Chinese Medical Sciences Journal, 2019, 34(1): 33-37. |
[13] | Li Ping, Zhu Liang, Wang Xuan, Xue Huadan, Wu Xin, Jin Zhengyu. Imaging Diagnosis of Type Ⅲ Choledochal Cyst: A Case Report [J]. Chinese Medical Sciences Journal, 2018, 33(3): 194-203. |
[14] | Li Lihui, Huang Houbin, Chen Zhiye. Early Diagnosis of Recurrent Optic Neuritis Using Contrast-Enhanced T2 Fluid-attenuated Inversion Recovery Imaging: a Case Report [J]. Chinese Medical Sciences Journal, 2018, 33(2): 130-134. |
[15] | Chen Zhiye, Liu Mengqi, Ma Lin. Cortical Thinning Pattern of Bulbar- and Spinal-onset Amyotrophic Lateral Sclerosis: a Surface-based Morphometry Study [J]. Chinese Medical Sciences Journal, 2018, 33(2): 100-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1