Chinese Medical Sciences Journal ›› 2019, Vol. 34 ›› Issue (1): 45-50.doi: 10.24920/003572
收稿日期:
2019-02-01
修回日期:
2019-02-25
出版日期:
2019-03-30
发布日期:
2019-04-08
通讯作者:
王志伟,金征宇
E-mail:zhiweiwang1981@sina.com;jinzhengyu@163.com
Wang Guorong,Wang Zhiwei(),Jin Zhengyu()
Received:
2019-02-01
Revised:
2019-02-25
Published:
2019-03-30
Online:
2019-04-08
Contact:
Wang Zhiwei,Jin Zhengyu
E-mail:zhiweiwang1981@sina.com;jinzhengyu@163.com
摘要:
结直肠癌是常见的恶性肿瘤,在我国的发病率和死亡率逐步攀升。目前新辅助放化疗多用于结直肠癌患者的治疗中,有助于改善预后。但由于个体差异性,患者对新辅助放化疗的敏感性各不相同,因此预测治疗效果对下一步治疗方案的选择尤为重要。纹理分析作为一种图像后处理技术,越来越多地被应用于肿瘤影像学中。本文就纹理分析技术在结直肠癌患者新辅助放化疗疗效预测及预后分析中的应用做一综述。
Wang Guorong, Wang Zhiwei, Jin Zhengyu. Application and Progress of Texture Analysis in the Therapeutic Effect Prediction and Prognosis of Neoadjuvant Chemoradiotherapy for Colorectal Cancer[J].Chinese Medical Sciences Journal, 2019, 34(1): 45-50.
1. |
Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6):394-424. doi: 10.3322/caac.21492.
doi: 10.3322/caac.v68.6 |
2. |
Kemeny N . The management of resectable and unresectable liver metastases from colorectal cancer. Curr Opin Oncol 2010; 22(4):364-73. doi: 10.1097/CCO.0b013e32833a6c8a.
doi: 10.1097/CCO.0b013e32833a6c8a |
3. | Zhang S, Bai W, Tong X , et al. Correlation between tumor microenvironment-associated factors and the efficacy and prognosis of neoadjuvant therapy for rectal cancer. Oncol Lett 2019; 17(1):1062-70. doi: 10.3892/ol.2018.9682. |
4. |
Yang Z, Tang LH, Klimstra DS . Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011; 35(6):853-60. doi: 10.1097/PAS.0b013e31821a0696.
doi: 10.1097/PAS.0b013e31821a0696 |
5. |
Tsujikawa T, Yamamoto M, Shono K , et al. Assessment of intratumor heterogeneity in mesenchymal uterine tumor by an (18)F-FDG PET/CT texture analysis. Ann Nucl Med 2017; 31(10):752-7. doi: 10.1007/s12149-017-1208-x.
doi: 10.1007/s12149-017-1208-x pmid: 28905201 |
6. |
Kim HS, Kim JH, Yoon YC , et al. Tumor spatial heterogeneity in myxoid-containing soft tissue using texture analysis of diffusion-weighted MRI. PLoS One 2017; 12(7):e0181339. doi: 10.1371/journal.pone.0181339.
doi: 10.1371/journal.pone.0181339 pmid: 28708850 |
7. |
Van Cutsem E, Cervantes A, Adam R , et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27(8):1386-422. doi: 10.1093/annonc/mdw235.
doi: 10.1093/annonc/mdw235 pmid: 27380959 |
8. |
Li Y, Wang J, Ma X , et al. A review of neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Int J Biol Sci 2016; 12(8):1022-31. doi: 10.7150/ijbs.15438.
doi: 10.7150/ijbs.15438 pmid: 27489505 |
9. |
Birbeck KF, Macklin CP, Tiffin NJ , et al. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. Ann Surg 2002; 235(4):449-57.
doi: 10.1097/00000658-200204000-00001 pmid: 11923599 |
10. |
Rodel C, Grabenbauer GG, Papadopoulos T , et al. Apoptosis as a cellular predictor for histopathologic response to neoadjuvant radiochemotherapy in patients with rectal cancer. Int J Radiat Oncol Biol Phys 2002; 52(2):294-303.
doi: 10.1016/S0360-3016(01)02643-8 pmid: 11872273 |
11. |
Dworak O, Keilholz L, Hoffmann A . Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 1997; 12(1):19-23.
doi: 10.1007/s003840050072 pmid: 9548104 |
12. |
Davnall F, Yip CS, Ljungqvist G , et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 2012; 3(6):573-89. doi: 10.1007/s13244-012-0196-6.
doi: 10.1007/s13244-012-0196-6 pmid: 23093486 |
13. |
Alobaidli S , McQuaid S, South C, et al. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 2014; 87(1042):20140369. doi: 10.1259/bjr.20140369.
doi: 10.1259/bjr.20140369 pmid: 25051978 |
14. |
Scalco E, Rizzo G . Texture analysis of medical images for radiotherapy applications. Br J Radiol 2017; 90(1070):20160642. doi: 10.1259/bjr.20160642.
doi: 10.1259/bjr.20160642 pmid: 27885836 |
15. |
Lubner MG, Smith AD, Sandrasegaran K , et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 2017; 37(5):1483-503. doi: 10.1148/rg.2017170056.
doi: 10.1148/rg.2017170056 pmid: 28898189 |
16. | Habr-Gama A, Perez RO, Nadalin W , et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 2004; 240(4):711-7; discussion 717-8. |
17. |
De Cecco CN, Ganeshan B, Ciolina M , et al. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol 2015; 50(4):239-45. doi: 10.1097/rli.0000000000000116.
doi: 10.1097/RLI.0000000000000116 pmid: 25501017 |
18. |
De Cecco CN, Ciolina M, Caruso D , et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY) 2016; 41(9):1728-35. doi: 10.1007/s00261-016-0733-8.
doi: 10.1007/s00261-016-0733-8 pmid: 27056748 |
19. |
Caruso D, Zerunian M, Ciolina M , et al. Haralick’s texture features for the prediction of response to therapy in colorectal cancer: a preliminary study. La Radiol Med 2018; 123(3):161-7. doi: 10.1007/s11547-017-0833-8.
doi: 10.1007/s11547-017-0833-8 pmid: 29119525 |
20. |
Liu M, Lv H, Liu LH , et al. Locally advanced rectal cancer: predicting non-responders to neoadjuvant chemoradiotherapy using apparent diffusion coefficient textures. Int J Colorectal Dis 2017; 32(7):1009-12. doi: 10.1007/s00384-017-2835-3.
doi: 10.1007/s00384-017-2835-3 pmid: 28497403 |
21. |
Chee CG, Kim YH, Lee KH , et al. CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS One 2017; 12(8):e0182883. doi: 10.1371/journal.pone.0182883.
doi: 10.1371/journal.pone.0182883 pmid: 28797063 |
22. |
Bundschuh RA, Dinges J, Neumann L , et al. Textural parameters of tumor heterogeneity in (1)(8)F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med 2014; 55(6):891-7. doi: 10.2967/jnumed.113.127340.
doi: 10.2967/jnumed.113.127340 pmid: 24752672 |
23. |
Landreau P, Drouillard A, Launoy G , et al. Incidence and survival in late liver metastases of colorectal cancer. J Gastroenterol Hepatol 2015; 30(1):82-5. doi: 10.1111/jgh.12685.
doi: 10.1111/jgh.12685 pmid: 25088563 |
24. |
Chakedis J, Squires MH, Beal EW , et al. Update on current problems in colorectal liver metastasis. Current Probl Surg 2017; 54(11):554-602. doi: 10.1067/j.cpsurg.2017.10.002.
doi: 10.1067/j.cpsurg.2017.10.002 |
25. |
Chung WS, Park MS, Shin SJ , et al. Response evaluation in patients with colorectal liver metastases: RECIST version 1.1 versus modified CT criteria. AJR Am J Roentgenol 2012; 199(4):809-15. doi: 10.2214/ajr.11.7910.
doi: 10.2214/AJR.11.7910 pmid: 22997372 |
26. |
Rao SX, Lambregts DM, Schnerr RS , et al. CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United European Gastroenterol J 2016; 4(2):257-63. doi: 10.1177/2050640615601603.
doi: 10.1177/2050640615601603 pmid: 4804371 |
27. |
Ahn SJ, Kim JH, Park SJ , et al. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 2016; 85(10):1867-74. doi: 10.1016/j.ejrad.2016.08.014.
doi: 10.1016/j.ejrad.2016.08.014 pmid: 27666629 |
28. |
Beckers RCJ, Trebeschi S, Maas M , et al. CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival. Eur J Radiol 2018; 102:15-21. doi: 10.1016/j.ejrad.2018.02.031.
doi: 10.1016/j.ejrad.2018.02.031 pmid: 29685529 |
29. |
Liang HY, Huang YQ, Yang ZX , et al. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases. European Radiol 2016; 26(7):2009-18. doi: 10.1007/s00330-015-4043-2.
doi: 10.1007/s00330-015-4043-2 pmid: 26494642 |
30. |
Zhang H, Li W, Hu F , et al. MR texture analysis: potential imaging biomarker for predicting the chemotherapeutic response of patients with colorectal liver metastases. Abdom Radiol (New York) 2019; 44(1):65-71. doi: 10.1007/s00261-018-1682-1.
doi: 10.1007/s00261-018-1682-1 |
31. |
Miles KA, Ganeshan B, Griffiths MR , et al. Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 2009; 250(2):444-52. doi: 10.1148/radiol.2502071879.
doi: 10.1148/radiol.2502071879 pmid: 19164695 |
32. |
Ng F, Ganeshan B, Kozarski R , et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 2013; 266(1):177-84. doi: 10.1148/radiol.12120254.
doi: 10.1148/radiol.12120254 pmid: 23151829 |
33. |
Jalil O, Afaq A, Ganeshan B , et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Colorectal Dis 2017; 19(4):349-62. doi: 10.1111/codi.13496.
doi: 10.1111/codi.13496 pmid: 27538267 |
34. |
Lovinfosse P, Polus M, Van Daele D , et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. European J Nucl Med Mol Imaging 2018; 45(3):365-75. doi: 10.1007/s00259-017-3855-5.
doi: 10.1007/s00259-017-3855-5 pmid: 29046927 |
35. |
Chicklore S, Goh V, Siddique M , et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European J Nucl Med Mol Imaging 2013; 40(1):133-40. doi: 10.1007/s00259-012-2247-0.
doi: 10.1007/s00259-012-2247-0 pmid: 23064544 |
36. |
Mackin D, Fave X, Zhang L , et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015; 50(11):757-65. doi: 10.1097/rli.0000000000000180.
doi: 10.1097/RLI.0000000000000180 |
37. |
Fave X, Mackin D, Yang J , et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 2015; 42(12):6784-97. doi: 10.1118/1.4934826.
doi: 10.1118/1.4934826 pmid: 26632036 |
38. |
Fave X, Cook M, Frederick A , et al. Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph 2015; 44:54-61. doi: 10.1016/j.compmedimag.2015.04.006.
doi: 10.1016/j.compmedimag.2015.04.006 pmid: 26004695 |
39. |
Aerts HJ, Velazquez ER, Leijenaar RT , et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5:4006. doi: 10.1038/ncomms5006.
doi: 10.1038/ncomms5006 pmid: 4059926 |
40. |
Rizzo S, Botta F, Raimondi S , et al. Radiomics: the facts and the challenges of image analysis. European Radiol Exp 2018; 2(1):36. doi: 10.1186/s41747-018-0068-z.
doi: 10.1186/s41747-018-0068-z |
41. |
Summers RM . Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (New York) 2017; 42(2):342-5. doi: 10.1007/s00261-016-0950-1.
doi: 10.1007/s00261-016-0950-1 pmid: 27770161 |
[1] | 徐文琴, 叶静静, 陈天兵. 鉴定并验证与肺腺癌预后相关的新的miRNA-mRNA调节网络[J]. Chinese Medical Sciences Journal, 2022, 37(1): 31-43. |
[2] | 曹剑, 王国蓉, 王志伟, 金征宇. CT纹理分析:结直肠癌KRAS基因突变状态评估的潜在生物标志物[J]. Chinese Medical Sciences Journal, 2020, 35(4): 306-314. |
[3] | 李文省, 张彦丽. 用于膀胱癌预后预测的lncRNA分子标记物开发[J]. Chinese Medical Sciences Journal, 2020, 35(3): 239-247. |
[4] | 王站, 王旭, 王文达, 郑国洋, 郭浩, 张玉石. 术前中性粒细胞与淋巴细胞比值预测可切除泌尿系肿瘤预后的价值:系统综述和荟萃分析[J]. Chinese Medical Sciences Journal, 2020, 35(3): 262-271. |
[5] | 朱卫华,谢文勇,张哲栋,李澍,张大方,刘以俊,朱继业,冷希圣. 59例肝门部胆管癌切除术后并发症和生存率分析[J]. Chinese Medical Sciences Journal, 2020, 35(2): 157-169. |
[6] | 梁玺, 胡婧楠, 何建明. 氧化偶氮甲烷-硫酸葡聚糖硫酸钠诱导小鼠结直肠肿瘤方法的优化[J]. Chinese Medical Sciences Journal, 2019, 34(4): 281-288. |
[7] | 李旭, 吴蔽野, 张明珠, 申乐. 全身麻醉下剖宫产术的单中心回顾性队列研究[J]. Chinese Medical Sciences Journal, 2019, 34(4): 256-262. |
[8] | 陈强, 张丽伟, 黄党生, 张春红, 王秋霜, 沈东, 熊敏俊, 杨菲菲. 冠状动脉疾病合并糖尿病患者经StentBoost技术指导的经皮冠状动脉介入治疗后5年的随访分析[J]. Chinese Medical Sciences Journal, 2019, 34(3): 177-183. |
[9] | 王英伟, 张兴华, 王波涛, 王叶, 刘梦琦, 王海屹, 叶慧义. 体素内不相干运动成像参数的纹理分析在胰腺神经内分泌肿瘤和胰腺癌鉴别诊断中的价值[J]. Chinese Medical Sciences Journal, 2019, 34(1): 1-9. |
[10] | 王波涛, 刘明霞, 陈志晔. 磁共振T2加权成像纹理特征分析在脑胶质母细胞瘤与脑原发性中枢神经系统淋巴瘤鉴别诊断中的价值[J]. Chinese Medical Sciences Journal, 2019, 34(1): 10-17. |
[11] | 刘洪娟, 周欢粉, 宗林雄, 刘梦琦, 魏世辉, 陈志晔. 视神经炎患者视神经磁共振成像直方图分析[J]. Chinese Medical Sciences Journal, 2019, 34(1): 18-23. |
[12] | 徐佳, 王萱, 金征宇, 游燕, 王勤, 王士阗, 薛华丹. 钆塞酸二钠增强磁共振图像纹理分析对于评价大鼠肝纤维化的价值[J]. Chinese Medical Sciences Journal, 2019, 34(1): 24-32. |
[13] | 王波涛, 樊文萍, 许欢, 李丽慧, 张晓欢, 王昆, 刘梦琦, 游俊浩, 陈志晔. 磁共振扩散加权成像纹理特征分析在乳腺良恶性肿瘤鉴别中的价值[J]. Chinese Medical Sciences Journal, 2019, 34(1): 33-37. |
[14] | 刘永胜, 赵宇. 术中神经电生理监测在胸椎管狭窄症外科治疗中的应用进展[J]. Chinese Medical Sciences Journal, 2017, 32(4): 260-264. |
[15] | 陈振杰, 李航, 蔡建芳, 张鑫, 李超, 邹佩美, 李明喜, 陈丽萌, 李雪梅, 李学旺, 文煜冰. 肾小球皮质密度对随访5年的IgA肾病不良预后的预测△[J]. Chinese Medical Sciences Journal, 2017, 32(3): 145-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|
Supervised by National Health Commission of the People's Republic of China
9 Dongdan Santiao, Dongcheng district, Beijing, 100730 China
Tel: 86-10-65105897 Fax:86-10-65133074
E-mail: cmsj@cams.cn www.cmsj.cams.cn
Copyright © 2018 Chinese Academy of Medical Sciences
All right reserved.
京公安备110402430088 京ICP备06002729号-1